Hydrogen storage materials: present scenarios and future directions

This review describes the present state of contemporary solid state hydrogen storage on the basis of research carried out during the last decade. The article focuses on the key aspects of materials based on the physical and chemical storage of hydrogen and emerging mechanisms for reversible storage. Among chemical storage materials, we consider metal hydrides (both light and complex), nitrides-imides-amides and other multi-component systems and discuss the emergence of coordination polymers (metal organic frameworks; MOFs) among solids exhibiting physical storage. Significant challenges remain if we are to meet the practical demands required of a solid state storage system, namely high storage density together with favourable sorption thermodynamics and kinetics and prolonged cycleability and lifetime. This review emphasises both how our understanding of the storage mechanism (as a process or phenomenon during hydrogen cycling) is evolving and how this understanding impacts on future materials design. The prospect of high capacity storage and fast kinetics in nanostructured materials is highlighted as is the role of complex, multi-component, composite systems in future hydrogen storage research.

[1]  P. Ramachandran,et al.  Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. , 2007, Inorganic chemistry.

[2]  Ho-Kwang Mao,et al.  Hydrogen Clusters in Clathrate Hydrate , 2002, Science.

[3]  R. Ahuja,et al.  Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium , 2007, Proceedings of the National Academy of Sciences.

[4]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[5]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[6]  Thomas F. Koetzle,et al.  Study of the N−H···H−B Dihydrogen Bond Including the Crystal Structure of BH3NH3 by Neutron Diffraction , 1999 .

[7]  J. Baumann,et al.  Calorimetric process monitoring of thermal decomposition of B–N–H compounds , 2000 .

[8]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[9]  H. Fujii,et al.  Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System , 2004 .

[10]  G. Kubas Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules , 2007, Proceedings of the National Academy of Sciences.

[11]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and copper , 1967 .

[12]  I. Chorkendorff,et al.  Decomposition of lithium amide and imide films on nickel , 2007 .

[13]  L. Shaw,et al.  Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system , 2008 .

[14]  Yun Liu,et al.  Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  R. Juza,et al.  Das ternäre Imid Li2Mg2(NH)3 , 2004, Naturwissenschaften.

[16]  David S Sholl,et al.  Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. , 2006, The journal of physical chemistry. B.

[17]  G. Meisner,et al.  On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10. , 2006, Inorganic chemistry.

[18]  S. Srinivasan,et al.  Kinetic study and determination of the enthalpies of activation of the dehydrogenation of titanium- and zirconium-doped NaAlH4 and Na3AlH6 , 2003 .

[19]  I. Willner,et al.  Cover Picture: Increasing the Complexity of Periodic Protein Nanostructures by the Rolling‐Circle‐Amplified Synthesis of Aptamers (Angew. Chem. Int. Ed. 1/2008) , 2008 .

[20]  J. J. Reilly,et al.  Metal Hydride Storage for Mobile and Stationary Applications , 1975 .

[21]  William R. Gemmill,et al.  Facile Synthesis of a Highly Crystalline, Covalently Linked Porous Boronate Network , 2006 .

[22]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[23]  E. C. Ashby,et al.  The Direct Synthesis of Na3AlH6 , 1966 .

[24]  Ping-Ou Chen,et al.  Investigation on chemical reaction between LiAlH4 and LiNH2 , 2006 .

[25]  R. Tom Baker,et al.  Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. , 2007, Journal of the American Chemical Society.

[26]  Donald J. Siegel,et al.  Impact of Stoichiometry on the Hydrogen Storage Properties of LiNH2−LiBH4−MgH2 Ternary Composites , 2009 .

[27]  A. Cheetham,et al.  Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. , 2006, Journal of the American Chemical Society.

[28]  H. Fujii,et al.  Lithium nitride for reversible hydrogen storage , 2004 .

[29]  Synthesis and crystal structure of Li4BH4(NH2)3. , 2006, Chemical communications.

[30]  H. Fujii,et al.  Hydrogen absorption properties of Li-Mg-N-H system , 2005 .

[31]  K. Gross,et al.  In-situ X-ray diffraction study of the decomposition of NaAlH4 , 2000 .

[32]  Dmitri Golberg,et al.  Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. , 2002, Journal of the American Chemical Society.

[33]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[34]  Jianhui Wang,et al.  Hydrogen Storage in a LiNH 2 -MgH 2 (1:1) System , 2008 .

[35]  W. Wendlandt,et al.  The thermal dissociation of NH3BH3 , 1987 .

[36]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[37]  S. Orimo,et al.  Guidelines for Developing Amide-Based Hydrogen Storage Materials , 2005 .

[38]  B. Scott,et al.  Calcium amidotrihydroborate: a hydrogen storage material. , 2007, Angewandte Chemie.

[39]  M. Hirscher,et al.  Desorption studies of hydrogen in metal-organic frameworks. , 2008, Angewandte Chemie.

[40]  E. Majzoub,et al.  Crystal Structures of Calcium Borohydride: Theory and Experiment , 2009 .

[41]  Christopher M Wolverton,et al.  High throughput screening of the ternary LiNH2-MgH2-LiBH4 phase diagram , 2007 .

[42]  H. Fujii,et al.  Rechargeable hydrogen storage in nanostructured mixtures of hydrogenated carbon and lithium hydride , 2005 .

[43]  M. Au,et al.  Modified lithium borohydrides for reversible hydrogen storage. , 2006, The journal of physical chemistry. B.

[44]  Maximilian Fichtner,et al.  Effect of Ti catalyst with different chemical form on Li–N–H hydrogen storage properties , 2005 .

[45]  B. Bogdanovic,et al.  Light metal hydrides and complex hydrides for hydrogen storage. , 2004, Chemical communications.

[46]  Christopher Wolverton,et al.  A self-catalyzing hydrogen-storage material. , 2008, Angewandte Chemie.

[47]  Jae‐Hun Kim,et al.  Thermal decomposition behavior of calcium borohydride Ca(BH4)2 , 2008 .

[48]  T. Yildirim,et al.  Structures and Crystal Chemistry of Li2BNH6 and Li4BN3H10 , 2008 .

[49]  Allan Walton,et al.  A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. , 2007, Journal of the American Chemical Society.

[50]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[51]  M. Dornheim,et al.  Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides , 2007 .

[52]  Omar M Yaghi,et al.  Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. , 2005, Journal of the American Chemical Society.

[53]  Mitsuru Matsumoto,et al.  Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy , 2007 .

[54]  J. Linehan,et al.  In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material. , 2007, Physical chemistry chemical physics : PCCP.

[55]  Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. , 2005, The journal of physical chemistry. B.

[56]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[57]  E. Ruckenstein,et al.  High reversible hydrogen capacity of LiNH2/Li3N mixtures , 2005 .

[58]  N. Ohba,et al.  Hydrogen storage properties of Li–Mg–N–H systems , 2005 .

[59]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[60]  F. Pinkerton,et al.  Reversible hydrogen storage in the lithium borohydride-calcium hydride coupled system , 2008 .

[61]  Takayuki Ichikawa,et al.  Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. , 2005, The journal of physical chemistry. B.

[62]  Ping-Ou Chen,et al.  Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system , 2005 .

[63]  Jason Graetz,et al.  New approaches to hydrogen storage. , 2009, Chemical Society reviews.

[64]  E. Ruckenstein,et al.  Highly Effective Li2O/Li3N with Ultrafast Kinetics for H2 Storage , 2004 .

[65]  Andreas Züttel,et al.  Hydrogen storage properties of LiBH4 , 2003 .

[66]  Jean M. J. Fréchet,et al.  High surface area nanoporous polymers for reversible hydrogen storage , 2006 .

[67]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[68]  Donald J. Siegel,et al.  Discovery of novel hydrogen storage materials: an atomic scale computational approach , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  Jun Chen,et al.  Ammonia borane as an efficient and lightweight hydrogen storage medium , 2008 .

[70]  Ping Chen,et al.  Recent progress in hydrogen storage , 2008 .

[71]  Qiang Xu,et al.  Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature , 2006 .

[72]  Guotao Wu,et al.  High-capacity hydrogen storage in lithium and sodium amidoboranes. , 2008, Nature materials.

[73]  E. Ruckenstein,et al.  Ultrafast reaction between Li3N and LiNH2 to prepare the effective hydrogen storage material Li2NH , 2006 .

[74]  Sang Soo Han,et al.  Covalent organic frameworks as exceptional hydrogen storage materials. , 2008, Journal of the American Chemical Society.

[75]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[76]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[77]  G. Meisner,et al.  Study of the lithium–nitrogen–hydrogen system , 2005 .

[78]  Leon L. Shaw,et al.  Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio , 2007 .

[79]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[80]  R. Schulz,et al.  Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite , 2000 .

[81]  Wendy L. Mao,et al.  Hydrogen storage in molecular compounds. , 2004 .

[82]  N. Ohba,et al.  Structural and dehydriding properties of Ca(BH4)2 , 2008 .

[83]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[84]  Jacques Huot,et al.  Mechanically alloyed metal hydride systems , 2001 .

[85]  A. Huq,et al.  Structural Studies of Deuteration and Dedeuteration of Li3N by Use of In Situ Neutron Diffraction , 2007 .

[86]  Hui Wu,et al.  Structure of ternary imide Li2Ca(NH)2 and hydrogen storage mechanisms in amide-hydride system. , 2008, Journal of the American Chemical Society.

[87]  D. Heldebrant,et al.  In situ multinuclear NMR spectroscopic studies of the thermal decomposition of ammonia borane in solution. , 2008, Angewandte Chemie.

[88]  Yongfeng Liu,et al.  Large Amount of Hydrogen Desorption from the Mixture of Mg(NH2)2 and LiAlH4 , 2007 .

[89]  M. Fichtner,et al.  Investigation on the Properties of the Mixture Consisting of Mg(NH2)2, LiH, and LiBH4 as a Hydrogen Storage Material , 2008 .

[90]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[91]  J. Nørskov,et al.  Trends in hydride formation energies for magnesium-3d transition metal alloys , 2005 .

[92]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[93]  Henrietta W. Langmi,et al.  Non-hydride systems of the main group elements as hydrogen storage materials , 2007 .

[94]  J. Fulton,et al.  In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. , 2005, Journal of the American Chemical Society.

[95]  Adriano Zecchina,et al.  Role of exposed metal sites in hydrogen storage in MOFs. , 2008, Journal of the American Chemical Society.

[96]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[97]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[98]  J. V. Paasschen,et al.  New synthetic approaches to ammonia-borane and its deuterated derivatives , 1977 .

[99]  K. I. Goldberg,et al.  Efficient catalysis of ammonia borane dehydrogenation. , 2006, Journal of the American Chemical Society.

[100]  Y. Kojima,et al.  IR characterizations of lithium imide and amide , 2005 .

[101]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[102]  Emmanuel Tylianakis,et al.  Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. , 2008, Nano letters.

[103]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[104]  David S Sholl,et al.  Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. , 2007, Physical chemistry chemical physics : PCCP.

[105]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[106]  W. Wendlandt,et al.  The thermal decomposition of ammonia borane , 1978 .

[107]  Chemical activation of MgH2; a new route to superior hydrogen storage materials. , 2005, Chemical communications.

[108]  N. Ohba,et al.  First-principles study on thermodynamical stability of metal borohydrides: Aluminum borohydride Al(BH4)3 , 2006 .

[109]  Hui Wu Strategies for the improvement of the hydrogen storage properties of metal hydride materials. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[110]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[111]  D. Gregory Lithium nitrides as sustainable energy materials. , 2008, Chemical record.

[112]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[113]  S. Orimo,et al.  Destabilization of Li-based complex hydrides , 2004 .

[114]  S. Sickafoose,et al.  Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system , 2006 .

[115]  T. B. Marder,et al.  Will we soon be fueling our automobiles with ammonia-borane? , 2007, Angewandte Chemie.

[116]  Zhengxiao Guo,et al.  Density functional theory simulations of complex hydride and carbon-based hydrogen storage materials. , 2009, Chemical Society reviews.

[117]  S. Kaskel,et al.  Improved Hydrogen Storage in the Metal‐Organic Framework Cu3(BTC)2 , 2006 .

[118]  Frederick E. Pinkerton,et al.  Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material , 2007 .

[119]  M. Ryan,et al.  The thermal decomposition of ammonia borane: A potential hydrogen storage material , 2008 .

[120]  H. Fujii,et al.  Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. , 2006, The journal of physical chemistry. B.

[121]  A. Alavi,et al.  A first-principles investigation of LiNH(2) as a hydrogen-storage material: effects of substitutions of K and Mg for Li. , 2006, Journal of Physical Chemistry B.

[122]  Chang Won Yoon,et al.  Ammonia triborane: a promising new candidate for amineborane-based chemical hydrogen storage. , 2006, Journal of the American Chemical Society.

[123]  E. Ganz,et al.  Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. , 2005, The Journal of chemical physics.

[124]  A. Züttel,et al.  Experimental studies on intermediate compound of LiBH4 , 2006 .

[125]  A. Züttel,et al.  Thermodynamical stability of calcium borohydride Ca(BH4)(2) , 2006 .

[126]  H. Sohn,et al.  A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-. , 2006, Inorganic chemistry.

[127]  T. Klassen,et al.  Hydrogen sorption of nanocrystalline mg at reduced temperatures by Metal-Oxide catalysts , 2001 .

[128]  Craig M. Jensen,et al.  Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material , 2001 .

[129]  S. Orimo,et al.  Synthesis and dehydriding studies of Mg–N–H systems , 2004 .

[130]  S. Shore,et al.  THE CRYSTALLINE COMPOUND AMMONIA-BORANE,1 H3NBH3 , 1955 .

[131]  C. Arean,et al.  Materials for hydrogen storage: current research trends and perspectives. , 2008, Chemical communications.

[132]  Ping-Ou Chen,et al.  Reversible Hydrogen Storage by a Li–Al–N–H Complex , 2007 .

[133]  V. Ozoliņš,et al.  First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. , 2009, Journal of the American Chemical Society.

[134]  T. Czujko,et al.  Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling , 2006 .

[135]  Kondo-Francois Aguey-Zinsou,et al.  Synthesis of Colloidal Magnesium: A Near Room Temperature Store for Hydrogen , 2008 .

[136]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[137]  D. Dixon,et al.  Acid initiation of ammonia-borane dehydrogenation for hydrogen storage. , 2007, Angewandte Chemie.

[138]  E. Mayer Conversion of dihydridodiammineboron(III) borohydride to ammonia-borane without hydrogen evolution , 1973 .

[139]  M. Aoki,et al.  First-principles study on the stability of intermediate compounds of LiBH(4) , 2006, cond-mat/0606228.

[140]  R. Schulz,et al.  Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride , 1999 .

[141]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[142]  G. Lu,et al.  Ammonia Borane Destabilized by Lithium Hydride: An Advanced On‐Board Hydrogen Storage Material , 2008, Advanced materials.

[143]  S. Orimo,et al.  Revised Crystal Structure Model of Li2NH by Neutron Powder Diffraction , 2004, cond-mat/0406025.

[144]  E. Ronnebro,et al.  Towards a viable hydrogen storage system for transportation application , 2005 .

[145]  G. Meisner,et al.  Hydrogen release from mixtures of lithium borohydride and lithium amide: a phase diagram study. , 2006, The journal of physical chemistry. B.

[146]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[147]  G. Cao,et al.  Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. , 2007, The journal of physical chemistry. B.

[148]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[149]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[150]  A. Züttel,et al.  Tetrahydroborates as new hydrogen storage materials , 2007 .

[151]  M. Fichtner,et al.  Reaction steps in the Li–Mg–N–H hydrogen storage system , 2007 .

[152]  Zhigang Zak Fang,et al.  A new Li-Al-N-H system for reversible hydrogen storage. , 2006, The journal of physical chemistry. B.

[153]  A. Cheetham,et al.  Hydrogen adsorption in nanoporous nickel(II) phosphates. , 2003, Journal of the American Chemical Society.

[154]  B. Militzer,et al.  Hydrogen storage in molecular clathrates. , 2007, Chemical reviews.

[155]  Ping Wang,et al.  Hydrogen-rich boron-containing materials for hydrogen storage. , 2008, Dalton transactions.

[156]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[157]  John J. Vajo,et al.  Hydrogen storage in destabilized chemical systems , 2007 .

[158]  S. Orimo,et al.  Dehydriding reaction of Mg(NH2)2–LiH system under hydrogen pressure , 2007 .

[159]  H. Fujii,et al.  Hydrogen storage properties in Ti catalyzed Li–N–H system , 2005 .

[160]  J. Chen,et al.  Review of hydrogen storage in inorganic fullerene-like nanotubes , 2004 .

[161]  S. Orimo,et al.  Dehydriding and rehydriding properties of Mg(NH2)2–LiH systems , 2007 .

[162]  Thomas Klassen,et al.  Hydrogen storage in magnesium-based hydrides and hydride composites , 2007 .

[163]  T. Yildirim,et al.  Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties. , 2008, Journal of the American Chemical Society.

[164]  N. Ohba,et al.  Dehydriding and rehydriding processes of well-crystallized Mg(BH4)2 accompanying with formation of intermediate compounds , 2008 .

[165]  S. Ernst,et al.  Zeolites as media for hydrogen storage , 1995 .

[166]  H. A. Peretti,et al.  Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals , 2008 .

[167]  J. Tarascon,et al.  Catalytic activity of oxides and halides on hydrogen storage of MgH2 , 2006 .

[168]  Donald J. Siegel,et al.  Hydrogen storage properties of 2LiNH2 + LiBH4 + MgH2 , 2007 .

[169]  T. Clark,et al.  Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3N.BH3 in air. , 2007, Inorganic chemistry.

[170]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[171]  J. Baumann,et al.  Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release , 2005 .

[172]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[173]  H. Yamane,et al.  Reactivity of hydrogen and ternary nitrides containing lithium and 13 group elements , 2005 .

[174]  Lithium calcium imide [Li2Ca(NH)2] for hydrogen storage: structural and thermodynamic properties. , 2008, The journal of physical chemistry. B.

[175]  S. Shore,et al.  Chemical Evidence for the Structure of the “Diammoniate of Diborane.” II. The Preparation of Ammonia-Borane , 1958 .

[176]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .

[177]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[178]  Guotao Wu,et al.  Investigations on hydrogen storage over Li–Mg–N–H complex—the effect of compositional changes , 2006 .

[179]  L. Shaw,et al.  Enhancement of lithium amide to lithium imide transition via mechanical activation. , 2006, The journal of physical chemistry. B.

[180]  Zaiping Guo,et al.  Improved hydrogen storage of LiBH4 catalyzed magnesium , 2007 .

[181]  E. Ruckenstein,et al.  Effect of the heat pretreatment of Li3N on its H2storage performance , 2004 .

[182]  Z. Wu,et al.  Improved hydrogen storage properties of LiBH4 destabilized by carbon , 2007 .

[183]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[184]  N. Champness,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[185]  E. Ruckenstein,et al.  Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N , 2003 .

[186]  J. Hanson,et al.  Crystal structure determination and reaction pathway of amide–hydride mixtures , 2008 .

[187]  Kunlun Hong,et al.  Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. , 2008, Journal of the American Chemical Society.

[188]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[189]  N. Ohba,et al.  Hydrogen absorption and desorption by the Li-Al-N-H system. , 2006, The journal of physical chemistry. B.

[190]  S. Hino,et al.  New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage , 2004 .

[191]  J. Bitter,et al.  Sodium alanate nanoparticles--linking size to hydrogen storage properties. , 2008, Journal of the American Chemical Society.

[192]  Tatsuo C. Kobayashi,et al.  Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. , 2005, Angewandte Chemie.

[193]  C. Wolverton,et al.  Hydrogen Storage Properties in (LiNH2)2−LiBH4−(MgH2)X Mixtures (X = 0.0−1.0) , 2008 .

[194]  J. Dawson Prospects for hydrogen as an energy resource , 1974, Nature.

[195]  K. Harris,et al.  A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. , 2007, Chemical communications.

[196]  Qiang Xu,et al.  Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts , 2007 .

[197]  F. Pinkerton Decomposition kinetics of lithium amide for hydrogen storage materials , 2005 .

[198]  M. Hirscher,et al.  Hydrogen desorption properties of mechanically alloyed MgH2 composite materials , 2000 .

[199]  Jun Chen,et al.  Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. , 2007, Journal of the American Chemical Society.

[200]  K. Luo,et al.  Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. , 2009, Journal of the American Chemical Society.

[201]  Z. Yang,et al.  Probing the reaction pathway of dehydrogenation of the LiNH2 + LiH mixture using in situ 1H NMR spectroscopy , 2008 .

[202]  S. Orimo,et al.  Synthesis of LiNH2 films by vacuum evaporation , 2004 .

[203]  J. Baumann,et al.  Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods , 2002 .

[204]  Lei Xie,et al.  Superior hydrogen desorption kinetics of Mg(NH2)2 hollow nanospheres mixed with MgH2 nanoparticles , 2008 .

[205]  R. Brand,et al.  Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials , 2000 .

[206]  M. Gupta,et al.  First principles study of the destabilization of Li amide–imide reaction for hydrogen storage , 2007 .

[207]  Jun Chen,et al.  Magnesium nanostructures for energy storage and conversion , 2009 .

[208]  T. Klassen,et al.  Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst , 2003 .

[209]  L. Hector,et al.  Crystal structures and phase transformation of deuterated lithium imide, Li2ND , 2006 .

[210]  S. Orimo,et al.  Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2 , 2007 .

[211]  Rustam Z. Khaliullin,et al.  Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: a computational study. , 2008, Inorganic chemistry.

[212]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[213]  Gang Chen,et al.  Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review , 2007 .

[214]  W. Luo Corrigendum to “(LiNH2–MgH2): a viable hydrogen storage system”: [J. Alloys Comp. 381 (2004) 284–287] , 2004 .

[215]  H. Nozaki,et al.  Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction , 2005 .

[216]  Thomas Klassen,et al.  Effect of Nb2O5 content on hydrogen reaction kinetics of Mg , 2004 .

[217]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[218]  S. Orimo,et al.  Dehydriding reactions of mixed complex hydrides , 2006 .

[219]  S. Hino,et al.  Desorption behaviours from metal–N–H systems synthesized by ball milling , 2005 .

[220]  Robert Butterick,et al.  Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. , 2006, Journal of the American Chemical Society.

[221]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[222]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[223]  Kondo‐François Aguey‐Zinsou,et al.  Reaction paths between LiNH2 and LiH with effects of nitrides. , 2007, The journal of physical chemistry. B.

[224]  Xiulin Fan,et al.  Direct synthesis of nanocrystalline NaAlH4 complex hydride for hydrogen storage , 2009 .

[225]  B. Bogdanovic,et al.  Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium–magnesium alanates , 2006 .

[226]  J. Tarascon,et al.  Decomposition of LiAl(NH2)4 and Reaction with LiH for a Possible Reversible Hydrogen Storage , 2007 .

[227]  Y. Estrin,et al.  The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy , 2004 .

[228]  Qiang Xu,et al.  Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. , 2008, Angewandte Chemie.

[229]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[230]  A. J. Blake,et al.  Twelve-connected porous metal-organic frameworks with high H(2) adsorption. , 2007, Chemical communications.

[231]  R. Schulz,et al.  Recent developments in the applications of nanocrystalline materials to hydrogen technologies , 1999 .

[232]  Yumiko Nakamura,et al.  Dehydrogenation reaction of Li–Mg–N–H systems studied by in situ synchrotron powder X-ray diffraction and powder neutron diffraction , 2008 .

[233]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[234]  S. Orimo,et al.  Destabilization of LiBH4 by mixing with LiNH2 , 2005 .

[235]  S. Hino,et al.  Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5 , 2006 .

[236]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[237]  Hong‐Cai Zhou,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[238]  V. Pecharsky,et al.  Mechanochemical transformations in Li(Na)AlH4–Li(Na)NH2 systems , 2007 .

[239]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[240]  Marco Sommariva,et al.  Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal borohydride. , 2008, Angewandte Chemie.

[241]  N. Ohba,et al.  Destabilization and enhanced dehydriding reaction of LiNH2: an electronic structure viewpoint , 2004 .

[242]  Jun Chen,et al.  Studies on the Hydrogen Storage of Magnesium Nanowires by Density Functional Theory , 2009 .

[243]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[244]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[245]  J. Shim,et al.  Reversible hydrogen storage in calcium borohydride Ca(BH4)2 , 2008 .

[246]  T. Emge,et al.  Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks , 2005 .

[247]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[248]  E. C. Ashby,et al.  Thermal decomposition of complex metal hydrides , 1972 .

[249]  Hui-Ming Cheng,et al.  In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3 , 2009 .

[250]  J. Tarascon,et al.  Fast hydrogen sorption kinetics for ball-milled Mg2Ni alloys , 2004 .

[251]  Ian Manners,et al.  Transition metal-catalyzed formation of boron-nitrogen bonds: catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. , 2003, Journal of the American Chemical Society.

[252]  C. Lamberti,et al.  Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates , 2006 .

[253]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[254]  D. Gregory Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores , 2008 .

[255]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[256]  W. Grochala,et al.  Substantial emission of NH3 during thermal decomposition of sodium amidoborane, NaNH2BH3 , 2009 .

[257]  V. Ozoliņš,et al.  First-principles prediction of a ground state crystal structure of magnesium borohydride. , 2008, Physical Review Letters.

[258]  M. Au,et al.  Modified lithium borohydrides for reversible hydrogen storage (2). , 2005, The journal of physical chemistry. B.

[259]  B. D. Kay,et al.  Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. , 2005, Angewandte Chemie.

[260]  A. Züttel,et al.  Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments , 2006 .

[261]  R. T. Yang,et al.  Kinetics and Mechanistic Model for Hydrogen Spillover on Bridged Metal−Organic Frameworks , 2007 .

[262]  K. L. Tan,et al.  Interaction between Lithium Amide and Lithium Hydride , 2003 .

[263]  M. Côté,et al.  First-principles study of the rotational transitions of H2 physisorbed over benzene. , 2004, The Journal of chemical physics.

[264]  Qiang Xu,et al.  A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane , 2006 .

[265]  Robert Schulz,et al.  Synthesis of nanocrystalline hydrogen storage materials , 2003 .

[266]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[267]  Vincent Pons,et al.  Ammonia-borane: the hydrogen source par excellence? , 2007, Dalton transactions.

[268]  Robert C. Bowman,et al.  Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si , 2004 .

[269]  Yongfeng Liu,et al.  Improvement of Hydrogen Storage Properties of the LiMgNH System by Addition of LiBH 4 , 2008 .

[270]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[271]  S. Orimo,et al.  Li–N based hydrogen storage materials , 2004 .

[272]  Jinbo Yang,et al.  Study of the Crystal Structure and Phase Transition of Li 2 NH System , 2008 .

[273]  E. Ruckenstein,et al.  H2 Storage in Li3N. Temperature-Programmed Hydrogenation and Dehydrogenation , 2003 .

[274]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.