Impact of molybdenum nanoparticles on survival, activity of enzymes, and chemical elements in Eisenia fetida using test on artificial substrata

[1]  N. Taran,et al.  The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. , 2014, Nanoscale Research Letters.

[2]  M. Sohn,et al.  Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. , 2014, The Science of the total environment.

[3]  H. Abdul Aziz,et al.  Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. , 2014, The Science of the total environment.

[4]  Stephen Lofts,et al.  Metal‐based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates , 2012, Environmental toxicology and chemistry.

[5]  J. Buekers,et al.  Effect of long-term equilibration on the toxicity of molybdenum to soil organisms. , 2012, Environmental pollution.

[6]  J. P. Sousa,et al.  Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix. , 2011, Ecotoxicology and environmental safety.

[7]  Peng Wang,et al.  Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. , 2011, Environment international.

[8]  Wenchao Du,et al.  TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. , 2011, Journal of environmental monitoring : JEM.

[9]  C. A. V. van Gestel,et al.  The bioaccumulation of Molybdenum in the earthworm Eisenia andrei: influence of soil properties and ageing. , 2011, Chemosphere.

[10]  C. A. V. van Gestel,et al.  The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. , 2011, Ecotoxicology and environmental safety.

[11]  V. Matějka,et al.  TOXICITY ASSESSMENT OF VERMICULITE/TiO2 AND BENTONITE/TiO2 COMPOSITES USING GREEN ALGAE DESMODESMUS SUBSPICATUS , 2011 .

[12]  S. McGrath,et al.  Predicting molybdenum toxicity to higher plants: influence of soil properties. , 2010, Environmental pollution.

[13]  C. A. V. van Gestel,et al.  Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. , 2010, Chemosphere.

[14]  J. Žaltauskaitė,et al.  Effects of total cadmium and lead concentrations in soil on the growth, reproduction and survival of earthworm Eisenia fetida @@@Kadmio ir švino koncentracijos dirvožemyje poveikis slieko Eisenia fetida augimui, reprodukcijai ir išgyvenamumui , 2010 .

[15]  J. Buekers,et al.  Toxicity of the molybdate anion in soil is partially explained by effects of the accompanying cation or by soil pH , 2010, Environmental toxicology and chemistry.

[16]  Jing Chen,et al.  Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. , 2010 .

[17]  Colin R. Janssen,et al.  Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging After Contamination: Using Calibrated Bioavailability Models to Set Ecological Soil Standards , 2009, Environmental toxicology and chemistry.

[18]  Thomas Wichard,et al.  Storage and bioavailability of molybdenum in soils increased by organic matter complexation , 2009 .

[19]  P. Krogh,et al.  The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. , 2008, Ecotoxicology and environmental safety.

[20]  Lin Yu-suo Effect of Monosultap on Protein Content,SOD and AChE Activity of Eisenia foetida Under Two Different Temperatures , 2007 .

[21]  F. Bittner,et al.  Cell biology of molybdenum. , 2006, Biochimica et biophysica acta.

[22]  Xiaoe Yang,et al.  Trace elements in agroecosystems and impacts on the environment. , 2005, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[23]  Malyka Galay Burgos,et al.  Cu and Cd effects on the earthworm Lumbricus rubellus in the laboratory: multivariate statistical analysis of relationships between exposure, biomarkers, and ecologically relevant parameters. , 2005, Environmental science & technology.

[24]  M. Vijver,et al.  Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms , 2003 .

[25]  R. Lanno,et al.  Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida. , 2002, Chemosphere.

[26]  Domy C. Adriano,et al.  Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals , 2001 .

[27]  D. Adriano Trace elements in terrestrial environments , 2001 .

[28]  R. Lanno,et al.  Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. , 2000, Chemosphere.

[29]  M. McBride,et al.  Molybdenum uptake by forage crops grown on sewage sludge-amended soils in the field and greenhouse. , 2000 .

[30]  S. Sheppard,et al.  Depuration and uptake kinetics of I, Cs, Mn, Zn and Cd by the earthworm (Lumbricus terrestris) in radiotracer‐spiked litter , 1997 .

[31]  C. Gestel Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays , 1997 .

[32]  P. Dalby,et al.  "Filter paper method" to remove soil from earthworm intestines and to standardise the water content of earthworm tissue , 1996 .

[33]  J. Hamelink,et al.  Bioavailability: Physical, Chemical, and Biological Interactions , 1994 .

[34]  E. Landa Leaching of molybdenum and arsenic from uranium ore and mill tailings , 1984 .