A No-Trim, Scaling-Friendly Thermal Sensor in 16nm FinFET Using Bulk Diodes as Sensing Elements

We present a simple, yet robust architecture to achieve accurate temperature sensing without the need for costly calibration. For the first time, the active bulk diode of a standard CMOS process is utilized in replacement of BJT devices. Two such diodes are forward biased by a charge pump, which periodically discharges two sampling capacitors across the diodes. The sampled voltages are then combined to generate PTAT and CTAT signals. A passive charge-balancing scheme creates a digital output, which only requires a comparator, an 8-bit capacitive divider and SAR logic. Occupying 2500 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}^{2}$ </tex-math></inline-formula> active area in 16-nm FinFET, the sensor operates down to 0.85 V and features intrinsic supply robustness. It achieves an uncalibrated accuracy of +1.5/−2.0 °C (min/max) across the consumer temperature range, and dissipates 230 pJ in a 12.8 <inline-formula> <tex-math notation="LaTeX">$\mu \text{s}$ </tex-math></inline-formula> conversion time. Due to the simplicity and low analog content of this concept, it is insensitive to future scaling and well suited for use at multiple locations in SoCs.

[1]  Kofi A. A. Makinwa,et al.  10.3 A 0.12mm2 Wien-Bridge Temperature Sensor with 0.1°C (3σ) Inaccuracy from -40°C to 180°C , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[2]  Edward H. Hellen,et al.  Verifying the diode-capacitor circuit voltage decay , 2003 .

[3]  Matthias Eberlein,et al.  A 28nm CMOS ultra-compact thermal sensor in current-mode technique , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[4]  Yung-Chow Peng,et al.  A 0.7V resistive sensor with temperature/voltage detection function in 16nm FinFET technologies , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[5]  Tao Yu,et al.  BJT Device and Circuit Co-Optimization Enabling Bandgap Reference and Temperature Sensing in 7-nm FinFET , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).

[6]  David E. Duarte,et al.  Compact BJT-Based Thermal Sensor for Processor Applications in a 14 nm tri-Gate CMOS Process , 2015, IEEE Journal of Solid-State Circuits.

[7]  Harald Pretl,et al.  A 40nW, Sub-IV Truly ‘Digital’ Reverse Bandgap Reference Using Bulk-Diodes in 16nm FinFET , 2018, 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[8]  Kofi A. A. Makinwa,et al.  11.4 1650µm2 thermal-diffusivity sensors with inaccuracies down to ±0.75°C in 40nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[9]  Hyung-Jin Lee,et al.  An 8b subthreshold hybrid thermal sensor with ±1.07°C inaccuracy and single-element remote-sensing technique in 22nm FinFET , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[10]  Eric G. Soenen,et al.  A temperature sensor with a 3 sigma inaccuracy of ±2°C without trimming from −50°C to 150°C in a 16nm FinFET process , 2015, ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC).

[11]  Mingoo Seok,et al.  A 30.1μm2, < ±1.1°C-3σ-error, 0.4-to-1.0V temperature sensor based on direct threshold-voltage sensing for on-chip dense thermal monitoring , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).