Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations

We apply a multigrid reduction-in-time (MGRIT) algorithm to hyperbolic partial differential equations in one spatial dimension. This study is motivated by the observation that sequential time-stepp...

[1]  Charbel Farhat,et al.  A time‐parallel implicit method for accelerating the solution of non‐linear structural dynamics problems , 2009 .

[2]  Daniel Ruprecht,et al.  Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..

[3]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[4]  Graham Horton,et al.  The time‐parallel multigrid method , 1992 .

[5]  Thomas A. Manteuffel,et al.  Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study , 2017, SIAM J. Sci. Comput..

[6]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[7]  Stefan Vandewalle,et al.  Space-time Concurrent Multigrid Waveform Relaxation , 1994 .

[8]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[9]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[10]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[11]  R. LeVeque Numerical methods for conservation laws , 1990 .

[12]  Jan S. Hesthaven,et al.  On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method , 2014 .

[13]  Rolf Krause,et al.  Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.

[14]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[15]  Bernard Philippe,et al.  A parallel shooting technique for solving dissipative ODE's , 1993, Computing.

[16]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[17]  Martin J. Gander,et al.  Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .

[18]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[19]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[20]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[21]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2014 .

[22]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[23]  Robert D. Falgout,et al.  A parallel multigrid reduction in time method for power systems , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[24]  Jan S. Hesthaven,et al.  Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations , 2018, J. Comput. Phys..

[25]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[26]  Stefan Güttel A Parallel Overlapping Time-Domain Decomposition Method for ODEs , 2013, Domain Decomposition Methods in Science and Engineering XX.

[27]  Peter Arbenz,et al.  A Parallel Multigrid Solver for Time-Periodic Incompressible Navier-Stokes Equations in 3D , 2015, ENUMATH.

[28]  Rolf Krause,et al.  Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ArXiv.

[29]  A. Katz,et al.  Parallel Time Integration with Multigrid Reduction for a Compressible Fluid Dynamics Application , 2014 .

[30]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..