Improvement of CZTSSe film quality and superstrate solar cell performance through optimized post-deposition annealing

[1]  M. Remešová,et al.  Vibrational properties of the mechanochemically synthesized Cu 2 SnS 3 : Raman study , 2022, Journal of Raman Spectroscopy.

[2]  G. Konstantatos,et al.  Highly Efficient, Ultrathin, Cd-Free Kesterite Solar Cells in Superstrate Configuration Enabled by Band Level Tuning via Ag Incorporation , 2021, Nano Energy.

[3]  M. Courel,et al.  Loss mechanisms in CZTS and CZTSe Kesterite thin-film solar cells: Understanding the complexity of defect density , 2021, Solar Energy.

[4]  Nugraha,et al.  A progress review on the modification of CZTS(e)-based thin-film solar cells , 2021, Journal of Industrial and Engineering Chemistry.

[5]  A. Hafdallah,et al.  Copper concentration effect on physical properties of ultrasonically sprayed Cu2ZnSnS4 absorber thin films for solar cell applications , 2021, Applied Physics A.

[6]  Yanhong Luo,et al.  High-Efficiency (12.5%) Kesterite Solar Cell Realized by Crystallization Growth Kinetics Control over Aqueous Solution Based Cu2ZnSn(S, Se)4 , 2021, Journal of Materials Chemistry A.

[7]  Erteza Tawsif Efaz,et al.  A review of primary technologies of thin-film solar cells , 2021, Engineering Research Express.

[8]  J. Kumar,et al.  Optical phonons in pentanary compound (Ag Cu1−)2ZnSnS4 semiconductor: A raman study , 2020 .

[9]  H. Pathan,et al.  Photoelectrochemical Properties of Spray Deposited Cu2ZnSnS4 Photoelectrode: Enhancement in Photoconversion Efficiency with Film Thickness , 2020 .

[10]  M. Fahoume,et al.  Understanding effects of defects in bulk Cu2ZnSnS4 absorber layer of kesterite solar cells , 2020 .

[11]  S. Binetti,et al.  Kesterite solar-cells by drop-casting of inorganic sol–gel inks , 2020 .

[12]  G. Niaura,et al.  Impact of CdS layer thickness on the composition, structure and photovoltaic performance of superstrate CZTSSe solar cells , 2020 .

[13]  Aripriharta,et al.  Review of CIGS-based solar cells manufacturing by structural engineering , 2020 .

[14]  H. Jung,et al.  High-Efficiency Perovskite Solar Cells. , 2020, Chemical reviews.

[15]  G. Niaura,et al.  Photoelectrochemical, Raman spectroscopy, XRD and photoluminescence study of disorder in electrochemically deposited kesterite thin film , 2020 .

[16]  P. Mondal,et al.  X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods , 2020, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[17]  Debojyoti Nath,et al.  X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study , 2020 .

[18]  Hulin Huang,et al.  Effect of evaporated Sb layer on performance of flexible CZTSSe thin film solar cell , 2019, Solar Energy.

[19]  G. Niaura,et al.  Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach , 2019, Solar Energy.

[20]  R. A. Sousa,et al.  Effect of rapid thermal processing conditions on the properties of Cu 2 ZnSnS 4 thin films and solar cell performance , 2019 .

[21]  M. Ravindiran,et al.  Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device , 2018, Renewable and Sustainable Energy Reviews.

[22]  B. Vermang,et al.  On the identification of Sb_2Se_3 using Raman scattering , 2018 .

[23]  G. Niaura,et al.  Spray pyrolysis approach to CZTSSe thin films. Influence of solvents on film characteristics , 2018, Semiconductor Science and Technology.

[24]  Guangda Niu,et al.  Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency , 2018, Nature Communications.

[25]  Y. Duan,et al.  The role of Sb in solar cell material Cu2ZnSnS4 , 2017 .

[26]  R. Ganesan,et al.  Sulfurization and annealing effects on thermally evaporated CZTS films , 2017 .

[27]  Yun Sun,et al.  A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure , 2017 .

[28]  S. Haram,et al.  Voltammetry investigation on copper zinc tin sulphide /selenide (CZTSxSe1-x) alloy nanocrystals: Estimation of composition dependent band edge parameters , 2016 .

[29]  C. Jeon,et al.  A band-gap-graded CZTSSe solar cell with 12.3% efficiency , 2016 .

[30]  Chunlei Yang,et al.  Searching for a fabrication route of efficient Cu2ZnSnS4 solar cells by post-sulfuration of co-sputtered Sn-enriched precursors , 2015 .

[31]  A. Pérez‐Rodríguez,et al.  Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions , 2015 .

[32]  V. Kheraj,et al.  Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR , 2015 .

[33]  M. Ichimura,et al.  Influence of Secondary Phases in Kesterite-Cu2ZnSnS4 Absorber Material Based on the First Principles Calculation , 2015 .

[34]  A. Pérez‐Rodríguez,et al.  Discrimination and detection limits of secondary phases in Cu2ZnSnS4 using X-ray diffraction and Raman spectroscopy , 2014 .

[35]  Farjana J. Sonia,et al.  Improved structural and optical properties of Cu2ZnSnS4 thin films via optimized potential in single bath electrodeposition , 2014 .

[36]  Stéphane Jobic,et al.  Solid-state NMR and Raman spectroscopy to address the local structure of defects and the tricky issue of the Cu/Zn disorder in Cu-poor, Zn-rich CZTS materials. , 2014, Inorganic chemistry.

[37]  R. A. Sousa,et al.  Effect of rapid thermal processing conditions on the properties of Cu2ZnSnS4 thin films and solar cell performance , 2014 .

[38]  G. Dennler,et al.  Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction , 2014 .

[39]  Charlotte Platzer-Björkman,et al.  A low-temperature order-disorder transition in Cu2ZnSnS4 thin films , 2014 .

[40]  M. Placidi,et al.  Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis , 2013 .

[41]  A. Walsh,et al.  Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advanced materials.

[42]  M. Edoff,et al.  A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells. , 2012, Journal of the American Chemical Society.

[43]  H. Gong,et al.  Heat-field-stimulated decomposition reaction in Cu2ZnSnS4 , 2012 .

[44]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[45]  M. Edoff,et al.  Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells , 2012 .

[46]  Marika Edoff,et al.  Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing , 2011 .

[47]  P. Dale,et al.  The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.