Enumeration reducibility in closure spaces with applications to logic and algebra

In many instances in first order logic or computable algebra, classical theorems show that many problems are undecidable for general structures, but become decidable if some rigidity is imposed on the structure. For example, the set of theorems in many finitely axiomatisable theories is nonrecursive, but the set of theorems for any finitely axiomatisable complete theory is recursive. Finitely presented groups might have an nonrecursive word problem, but finitely presented simple groups have a recursive word problem.

[1]  Emmanuel Jeandel,et al.  Tilings and model theory , 2008, JAC.

[2]  Emmanuel Jeandel,et al.  Computing (or not) Quasi-periodicity Functions of Tilings , 2010, JAC.

[3]  André Nies,et al.  Computably Enumerable Sets and Quasi-Reducibility , 1998, Ann. Pure Appl. Log..

[4]  Nathalie Aubrun,et al.  An Order on Sets of Tilings Corresponding to an Order on Languages , 2009, STACS.

[5]  G. Higman Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[7]  H. Rogers,et al.  Reducibility and Completeness for Sets of Integers , 1959 .

[8]  Alexander Shen,et al.  Effective closed subshifts in 1D can be implemented in 2D , 2010, Fields of Logic and Computation.

[9]  Stephen Cole Kleene,et al.  Two papers on the predicate calculus , 1952 .

[10]  Martin Ziegler Algebraisch Abgeschlossene Gruppen , 1980 .

[11]  R. Grigorchuk Degrees of Growth of Finitely Generated Groups, and the Theory of Invariant Means , 1985 .

[12]  A. Tarski Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I , 1930 .

[13]  Alan L. Selman,et al.  Arithmetical Reducibilities I , 1971 .

[14]  Nathalie Aubrun,et al.  Simulation of Effective Subshifts by Two-dimensional Subshifts of Finite Type , 2013, ArXiv.

[15]  William Craig,et al.  Finite Axiomatizability using additional predicates , 1958, Journal of Symbolic Logic.

[16]  William W. Boone,et al.  Certain Simple, Unsolvable Problems of Group Theory. V 29,30) , 1957 .

[17]  M. Hochman On the dynamics and recursive properties of multidimensional symbolic systems , 2009 .

[18]  Angus Macintyre,et al.  The word problem for division rings , 1973, Journal of Symbolic Logic.

[19]  Oleg V. Belegradek Higman's Embedding Theorem in a General Setting and Its Application to Existentially Closed Algebras , 1996, Notre Dame J. Formal Log..

[20]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[21]  Pascal Vanier,et al.  Turing degrees of multidimensional SFTs , 2011, Theor. Comput. Sci..

[22]  Norman M. Martin,et al.  Closure Spaces and Logic , 1996 .

[23]  O. V. Belegradek,et al.  Algebraically closed groups , 1974 .

[24]  William W. Boone,et al.  An algebraic characterization of groups with soluble word problem , 1974, Journal of the Australian Mathematical Society.

[25]  A. I. Mal'tsev CONSTRUCTIVE ALGEBRAS I , 1961 .

[26]  Graham Higman,et al.  Existentially Closed Groups , 1988 .

[27]  Verena Huber Dyson,et al.  A family of groups with nice word problems , 1974, Journal of the Australian Mathematical Society.

[28]  Tom Meyerovitch,et al.  A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.

[29]  Jeffrey B. Remmel,et al.  Chapter 13 Π10 classes in mathematics , 1998 .

[30]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[31]  Ville Salo Decidability and universality of quasiminimal subshifts , 2017, J. Comput. Syst. Sci..

[32]  W. W. Boone Certain simple unsolvable problems of group theory. III , 1955 .

[33]  Luc Guyot,et al.  On the isolated points in the space of groups , 2007 .

[34]  Martin Ziegler Gruppen mit vorgeschriebenem Wortproblem , 1976 .