Synchronization of chaotic systems and invariant manifolds

The theory of normally hyperbolic invariant manifolds (Fenichel theory) can be used to define strict chaotic synchronization in terms of synchronization manifolds, and treat many ideas found in the physics and engineering literature analytically. In the first part of this work we introduce a modification of Fenichel theory which applies to chaotic synchronization and discuss the Lyapunov-exponent-like quantities used to determine the transverse stability of synchronization manifolds. The second part deals with the different methods for detecting synchrony: symmetry considerations, geometric singular perturbation theory and, in the case of uniformly asymptotically stable extensions, graph transforms. We also consider the case for which an extension of a system is only locally uniformly asymptotically stable and show that in such cases n:1 synchrony occurs.

[1]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[2]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[3]  J. Stark Regularity of invariant graphs for forced systems , 1999, Ergodic Theory and Dynamical Systems.

[4]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[5]  Optimal orbits of hyperbolic systems , 1999 .

[6]  R. Roy,et al.  Encoding and decoding messages with chaotic lasers , 1997 .

[7]  T. M. Seara,et al.  A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T 2 , 1999 .

[8]  Alexander S. Mikhailov,et al.  Condensation in globally coupled populations of chaotic dynamical systems , 1997, adap-org/9707004.

[9]  Ott,et al.  Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  S. Chow,et al.  Synchronization, stability and normal hyperbolicity , 1997 .

[11]  J. Hale Diffusive coupling, dissipation, and synchronization , 1997 .

[12]  J. Stark Invariant graphs for forced systems , 1997 .

[13]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[14]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[15]  I. Stewart,et al.  Bubbling of attractors and synchronisation of chaotic oscillators , 1994 .

[16]  Nikolai F. Rulkov,et al.  Images of synchronized chaos: Experiments with circuits. , 1996, Chaos.

[17]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[18]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[19]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[20]  S J Schiff,et al.  From generalized synchrony to topological decoherence: emergent sets in coupled chaotic systems. , 1999, Physical review letters.

[21]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[22]  Krešimir Josić,et al.  INVARIANT MANIFOLDS AND SYNCHRONIZATION OF COUPLED DYNAMICAL SYSTEMS , 1998 .

[23]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[24]  Gauthier,et al.  Intermittent Loss of Synchronization in Coupled Chaotic Oscillators: Toward a New Criterion for High-Quality Synchronization. , 1996, Physical review letters.

[25]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[26]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.

[27]  Kestutis Pyragas Predictable chaos in slightly perturbed unpredictable chaotic systems , 1993 .

[28]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[29]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[30]  Valentin Afraimovich,et al.  POINCAR E RECURRENCES OF COUPLED SUBSYSTEMS IN SYNCHRONIZED REGIMES , 1999 .

[31]  Steven H. Strogatz,et al.  Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation , 1996 .

[32]  J. Yorke,et al.  Differentiable generalized synchronization of chaos , 1997 .

[33]  Stochastic synchronization of oscillations in dissipative systems , 1986 .

[34]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[35]  George M. Zaslavsky,et al.  Fractal and multifractal properties of exit times and Poincarérecurrences , 1997 .

[36]  Ljupco Kocarev,et al.  Subharmonic Entrainment of Unstable Period Orbits and Generalized Synchronization , 1997 .

[37]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[38]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.