A study of adaptively remeshed finite element problems using higher order tetrahedra
暂无分享,去创建一个
Kent L. Lawrence | K. T. Schuetze | Panos S. Shiakolas | S. N. Muthukrishnan | R. V. Nambiar | K. L. Lawrence | P. Shiakolas | S. Muthukrishnan | R. Nambiar | K. Schuetze
[1] Scott W. Sloan,et al. A FORTRAN program for profile and wavefront reduction , 1989 .
[2] Kent L. Lawrence,et al. Simple algorithm for adaptive refinement of three-dimensional finite element tetrahedral meshes , 1995 .
[3] S. Timoshenko,et al. Theory of elasticity , 1975 .
[4] K. L. Lawrence,et al. Closed-form expressions for the linear and quadratic strain tetrahedral finite elements , 1994 .
[5] K. L. Lawrence,et al. Closed-form error estimators for the linear strain and quadratic strain tetrahedron finite elements , 1993 .
[6] O. C. Zienkiewicz,et al. Adaptive techniques in the finite element method , 1988 .
[7] Gauss‐Lobatto integration of high precision tetrahedral elements , 1982 .
[8] O. C. Zienkiewicz,et al. The Finite Element Method: Basic Formulation and Linear Problems , 1987 .
[9] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .