MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64

We present the first estimate of the Ly{\alpha} luminosity function using blind spectroscopy from the Multi Unit Spectroscopic Explorer, MUSE, in the Hubble Deep Field South. Using automatic source-detection software, we assemble a homogeneously-detected sample of 59 Ly{\alpha} emitters covering a flux range of -18.0 < log10 (F) < -16.3 (erg s^-1 cm^-2), corresponding to luminosities of 41.4 < log10 (L) < 42.8 (erg s^-1). As recent studies have shown, Ly{\alpha} fluxes can be underestimated by a factor of two or more via traditional methods, and so we undertake a careful assessment of each object's Ly{\alpha} flux using a curve-of-growth analysis to account for extended emission. We describe our self-consistent method for determining the completeness of the sample, and present an estimate of the global Ly{\alpha} luminosity function between redshifts 2.91 < z < 6.64 using the 1/Vmax estimator. We find the luminosity function is higher than many number densities reported in the literature by a factor of 2 - 3, although our result is consistent at the 1{\sigma} level with most of these studies. Our observed luminosity function is also in good agreement with predictions from semi-analytic models, and shows no evidence for strong evolution between the high- and low-redshift halves of the data. We demonstrate that one's approach to Ly{\alpha} flux estimation does alter the observed luminosity function, and caution that accurate flux assessments will be crucial in measurements of the faint end slope. This is a pilot study for the Ly{\alpha} luminosity function in the MUSE deep-fields, to be built on with data from the Hubble Ultra Deep Field which will increase the size of our sample by almost a factor of 10.

[1]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[2]  Lennox L. Cowie,et al.  HIGH-Z LYALPHA EMITTERS. I. A BLANK-FIELD SEARCH FOR OBJECTS NEAR REDSHIFT Z = 3.4 IN AND AROUND THE HUBBLE DEEP FIELD AND THE HAWAII DEEP FIELD SSA 22 , 1998 .

[3]  Arjun Dey,et al.  First results from the Large-Area Lyman Alpha survey , 1999 .

[4]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[5]  S. Okamura,et al.  Subaru Deep Survey. II. Luminosity Functions and Clustering Properties of Lyα Emitters at z = 4.86 in the Subaru Deep Field , 2002, astro-ph/0202204.

[6]  Didier Vibert,et al.  GALICS I: A hybrid N-body semi-analytic model of hierarchical galaxy formation , 2003 .

[7]  J. Vernet,et al.  A Lyman α emitter at z = 6.5 found with slitless spectroscopy , 2004 .

[8]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[9]  Caroline van Breukelen,et al.  The luminosity function of Lyα emitters at 2.3 z , 2005, astro-ph/0502409.

[10]  Mamoru Doi,et al.  Lyα Emitters at z = 5.7 in the Subaru Deep Field , 2006, astro-ph/0602614.

[11]  H. Spinrad,et al.  A Luminosity Function of Lyα-emitting Galaxies at z ≈ 4.5 , 2007, 0707.4182.

[12]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[13]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[14]  A. Szalay,et al.  Lyα-Emitting Galaxies at 0.2 < z < 0.35 from GALEX Spectroscopy , 2008, 0803.1924.

[15]  Oxford,et al.  HiZELS:a high-redshift survey of Hα emitters - II. the nature of star-forming galaxies at z = 0.84 , 2009, 0901.4114.

[16]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[17]  B. Garilli,et al.  The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.

[18]  P. McCarthy,et al.  DETECTIONS OF FAINT Lyα EMITTERS AT z = 5.7: GALAXY BUILDING BLOCKS AND ENGINES OF REIONIZATION , 2011, 1104.2900.

[19]  P. McCarthy,et al.  THE FAINT-END SLOPE OF THE REDSHIFT 5.7 Lyα LUMINOSITY FUNCTION, , 2011, 1111.2354.

[20]  N. Libeskind,et al.  Local Group progenitors: Lyman Alpha bright? , 2011, 1107.5721.

[21]  Toulouse,et al.  Grid of Lyαradiation transfer models for interpreting distant galaxies , 2011, Astronomy &amp; Astrophysics.

[22]  Ulrich Hopp,et al.  THE HETDEX PILOT SURVEY. II. THE EVOLUTION OF THE Lyα ESCAPE FRACTION FROM THE ULTRAVIOLET SLOPE AND LUMINOSITY FUNCTION OF 1.9 , 2010, 1011.0430.

[23]  R. Johnston Shedding light on the galaxy luminosity function , 2011, 1106.2039.

[24]  Tokyo,et al.  Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents? , 2012, 1204.4934.

[25]  Toru Yamada,et al.  PROFILES OF Lyα EMISSION LINES OF THE EMITTERS AT z = 3.1 , 2012 .

[26]  B. Guiderdoni,et al.  Modelling high redshift Lyman-alpha Emitters , 2012, 1202.0610.

[27]  J. Dunlop,et al.  Evolution of star formation in the UKIDSS Ultra Deep Survey Field - I. Luminosity functions and cosmic star formation rate out to z = 1.6 (vol 433, pg 796, 2013) , 2013, 1305.1305.

[28]  K. Shimasaku,et al.  FIRST SYSTEMATIC SEARCH FOR OXYGEN-LINE BLOBS AT HIGH REDSHIFT: UNCOVERING AGN FEEDBACK AND STAR FORMATION QUENCHING , 2013, 1306.5246.

[29]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[30]  K. Shimasaku,et al.  Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization , 2014, 1403.0732.

[31]  P. Weilbacher,et al.  The MUSE 3D view of the Hubble Deep Field South , 2014, 1411.7667.

[32]  P. McCarthy,et al.  CONFIRMATION OF A STEEP LUMINOSITY FUNCTION FOR Lyα EMITTERS AT z = 5.7: A MAJOR COMPONENT OF REIONIZATION , 2014, 1412.0655.

[33]  M. Trenti,et al.  Connecting faint-end slopes of the Lyman α emitter and Lyman-break galaxy luminosity functions , 2015, 1502.00022.

[34]  B. Guiderdoni,et al.  The UV, Lyman α, and dark matter halo properties of high-redshift galaxies , 2015, 1503.06635.

[35]  J. Dunlop,et al.  Evolution of star formation in the UKIDSS Ultra Deep Survey Field - II. Star formation as a function of stellar mass between z = 1.46 and 0.63 , 2015, 1509.06900.

[36]  M. Dijkstra,et al.  A SYSTEMATIC STUDY OF Lyα TRANSFER THROUGH OUTFLOWING SHELLS: MODEL PARAMETER ESTIMATION , 2015, 1506.03836.

[37]  H. Rottgering,et al.  Identification of the brightest Lyα emitters at z = 6.6 : Implications for the evolution of the luminosity function in the reionization era , 2015, 1502.07355.

[38]  K. Shimasaku,et al.  BRIGHT AND FAINT ENDS OF Lyα LUMINOSITY FUNCTIONS AT z = 2 DETERMINED BY THE SUBARU SURVEY: IMPLICATIONS FOR AGNs, MAGNIFICATION BIAS, AND ISM H I EVOLUTION , 2015, 1512.01854.

[39]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[40]  B. Guiderdoni,et al.  Lyman-α emitters in the context of hierarchical galaxy formation: predictions for VLT/MUSE surveys , 2015, 1511.05597.

[41]  MUSE observations of the lensing cluster Abell 1689 , 2016, 1603.05833.

[42]  M. Dijkstra,et al.  THE Lyα–LyC CONNECTION: EVIDENCE FOR AN ENHANCED CONTRIBUTION OF UV-FAINT GALAXIES TO COSMIC REIONIZATION , 2016, 1604.08208.

[43]  D. Sobral,et al.  The Lyα luminosity function at z = 5.7–6.6 and the steep drop of the faint end: implications for reionization , 2016, 1606.07435.

[44]  Simon J. Lilly,et al.  UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.