ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS

Smale’s α-theory uses estimates related to the convergence of Newton’s method to certify that Newton iterations will converge quadratically to solutions to a square polynomial system. The program alphaCertified implements algorithms based on α-theory to certify solutions of polynomial systems using both exact rational arithmetic and arbitrary precision floating point arithmetic. It also implements algorithms that certify whether a given point corresponds to a real solution, and algorithms to heuristically validate solutions to overdetermined systems. Examples are presented to demonstrate the algorithms.

[1]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[2]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[3]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[4]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[5]  Frank Sottile,et al.  Frontiers of reality in Schubert calculus , 2009 .

[6]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[7]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[8]  Andrew J. Sommese Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .

[9]  Eugenii Shustin,et al.  A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces , 2006 .

[10]  G. Mikhalkin Enumerative tropical algebraic geometry , 2003 .

[11]  G. Mikhalkin Enumerative tropical algebraic geometry in R^2 , 2003, math/0312530.

[12]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[13]  Frank Sottile,et al.  alphaCertified: certifying solutions to polynomial systems , 2010, ArXiv.

[14]  D. Stewart,et al.  A platform with 6 degrees of freedom , 1966 .

[15]  E. Mukhin,et al.  The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz , 2005 .

[16]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[17]  Maria Grazia Marinari,et al.  The shape of the Shape Lemma , 1994, ISSAC '94.

[18]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[19]  P. Dietmaier,et al.  The Stewart-Gough Platform of General Geometry can have 40 Real Postures , 1998 .

[20]  Kellen Petersen August Real Analysis , 2009 .

[21]  Frank Sottile,et al.  The Secant Conjecture in the Real Schubert Calculus , 2010, Exp. Math..

[22]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[23]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[24]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[25]  Charles W. Wampler,et al.  Interactions of Classical and Numerical Algebraic Geometry , 2009 .

[26]  Tommy Färnqvist Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .

[27]  Jonathan D. Hauenstein,et al.  Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials , 2009 .

[28]  Jonathan D. Hauenstein,et al.  Stepsize control for path tracking , 2009 .

[29]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[30]  D. Stewart,et al.  A Platform with Six Degrees of Freedom , 1965 .

[31]  Jean-Yves Welschinger,et al.  Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry , 2003 .

[32]  Frank Sottile,et al.  Galois groups of Schubert problems via homotopy computation , 2007, Math. Comput..

[33]  Gene H. Golub,et al.  Matrix computations , 1983 .

[34]  D. Lyth,et al.  The shape of the ρ(ππ → ππ andee → ππ) , 1971 .

[35]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[36]  R. Pandharipande,et al.  Notes on stable maps and quantum cohomology , 1996, alg-geom/9608011.

[37]  Anton Leykin,et al.  Certified Numerical Homotopy Tracking , 2009, Exp. Math..

[38]  Chiaki Itoh,et al.  Where Is the Σb , 1992 .

[39]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[40]  Daniel Perrucci,et al.  On the minimum of a positive polynomial over the standard simplex , 2009, J. Symb. Comput..

[41]  Jonathan D. Hauenstein,et al.  Regeneration homotopies for solving systems of polynomials , 2010, Math. Comput..

[42]  A. Morgan,et al.  Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages , 1992 .

[43]  Michael Shub,et al.  Newton's method for overdetermined systems of equations , 2000, Math. Comput..

[44]  Jonathan D. Hauenstein,et al.  Efficient path tracking methods , 2011, Numerical Algorithms.