A Frozen Jacobian Multiscale Mortar Preconditioner for Nonlinear Interface Operators

We present an efficient approach for preconditioning systems arising in multiphase flow in a parallel domain decomposition framework known as the mortar mixed finite element method. Subdomains are coupled together with appropriate interface conditions using mortar finite elements. These conditions are enforced using an inexact Newton--Krylov method, which traditionally required the solution of nonlinear subdomain problems on each interface iteration. A new preconditioner is formed by constructing a multiscale basis on each subdomain for a fixed Jacobian and time step. This basis contains the solutions of nonlinear subdomain problems for each degree of freedom in the mortar space and is applied using an efficient linear combination. Numerical experiments demonstrate the relative computational savings of recomputing the multiscale preconditioner sparingly throughout the simulation versus the traditional approach.

[1]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[2]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[3]  Mary F. Wheeler,et al.  A multiscale preconditioner for stochastic mortar mixed finite elements , 2011 .

[4]  Gergina Pencheva,et al.  Balancing domain decomposition for mortar mixed finite element methods , 2003, Numer. Linear Algebra Appl..

[5]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[6]  Ivan Yotov,et al.  Mixed finite element methods for flow in porous media , 1996 .

[7]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[8]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Ming Zhong,et al.  A Stochastic Mortar Mixed Finite Element Method for Flow in Porous Media with Multiple Rock Types , 2011, SIAM J. Sci. Comput..

[11]  Ivan Yotov,et al.  Implementation of a mortar mixed finite element method using a Multiscale Flux Basis , 2009 .

[12]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[13]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[14]  O. Pironneau Finite Element Methods for Fluids , 1990 .

[15]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[16]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..

[17]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[18]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[19]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[20]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[21]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[22]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[23]  Patrick Le Tallec,et al.  A Neumann--Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems , 1995 .

[24]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[25]  Ivan Yotov,et al.  A multilevel Newton–Krylov interface solver for multiphysics couplings of flow in porous media , 2001, Numer. Linear Algebra Appl..

[26]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[27]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[28]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[29]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[30]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[31]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[32]  J. Mandel Balancing domain decomposition , 1993 .

[33]  Mary F. Wheeler,et al.  Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .

[34]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..