Generalized Autoregressive Score Trees and Forests

We propose methods to improve the forecasts from generalized autoregressive score (GAS) models (Creal et. al, 2013; Harvey, 2013) by localizing their parameters using decision trees and random forests. These methods avoid the curse of dimensionality faced by kernel-based approaches, and allow one to draw on information from multiple state variables simultaneously. We apply the new models to four distinct empirical analyses, and in all applications the proposed new methods significantly outperform the baseline GAS model. In our applications to stock return volatility and density prediction, the optimal GAS tree model reveals a leverage effect and a variance risk premium effect. Our study of stock-bond dependence finds evidence of a flight-to-quality effect in the optimal GAS forest forecasts, while our analysis of high-frequency trade durations uncovers a volume-volatility effect.

[1]  Kim Christensen,et al.  A Machine Learning Approach to Volatility Forecasting , 2022, Journal of Financial Econometrics.

[2]  N. Hautsch,et al.  HARNet: A Convolutional Neural Network for Realized Volatility Forecasting , 2022, SSRN Electronic Journal.

[3]  A. Harvey Score-Driven Time Series Models , 2021, Annual Review of Statistics and Its Application.

[4]  Andrew J. Patton,et al.  Better the Devil You Know: Improved Forecasts from Imperfect Models , 2021, Social Science Research Network.

[5]  R. Kohn,et al.  Recurrent Conditional Heteroskedasticity † , 2020, Journal of Applied Econometrics.

[6]  Florian Huber,et al.  Nowcasting in a Pandemic Using Non-Parametric Mixed Frequency VARs , 2020, Journal of Econometrics.

[7]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[8]  Philippe Goulet Coulombe,et al.  The Macroeconomy as a Random Forest , 2020, SSRN Electronic Journal.

[9]  M. Büchner,et al.  Bond Risk Premiums with Machine Learning , 2020 .

[10]  Namita Srivastava,et al.  The Machine‐Learning Approach , 2020, Machine Learning for iOS Developers.

[11]  Bryan T. Kelly,et al.  Can Machines 'Learn' Finance? , 2020 .

[12]  Maxime Leroux,et al.  How is Machine Learning Useful for Macroeconomic Forecasting? , 2019, Journal of Applied Econometrics.

[13]  R. Kohn,et al.  A Statistical Recurrent Stochastic Volatility Model for Stock Markets , 2019, Journal of Business & Economic Statistics.

[14]  Gabriel F. R. Vasconcelos,et al.  Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods , 2019, Journal of Business & Economic Statistics.

[15]  Susan Athey,et al.  Machine Learning Methods That Economists Should Know About , 2019, Annual Review of Economics.

[16]  Yan Liu,et al.  Reconstructing the Yield Curve , 2019, Journal of Financial Economics.

[17]  Bryan T. Kelly,et al.  Empirical Asset Pricing Via Machine Learning , 2018, The Review of Financial Studies.

[18]  T. Hothorn,et al.  Distributional regression forests for probabilistic precipitation forecasting in complex terrain , 2018, The Annals of Applied Statistics.

[19]  Y. Amihud,et al.  Illiquidity and Stock Returns: Cross-Section and Time-Series Effects , 2000 .

[20]  S. Athey,et al.  Generalized random forests , 2016, The Annals of Statistics.

[21]  Hal R. Varian,et al.  Big Data: New Tricks for Econometrics , 2014 .

[22]  Kevin Sheppard,et al.  Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility , 2013, Review of Economics and Statistics.

[23]  A. Harvey Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series , 2013 .

[24]  S. Davis,et al.  Measuring Economic Policy Uncertainty , 2013 .

[25]  Faculteit der Economische Wetenschappen en Bedrijfskunde,et al.  Long Memory Dynamics for Multivariate Dependence Under Heavy Tails , 2011 .

[26]  Siem Jan Koopman,et al.  A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations , 2010 .

[27]  Yang Feng,et al.  Local quasi-likelihood with a parametric guide. , 2009, Annals of statistics.

[28]  Peter Carr,et al.  Variance Risk Premiums , 2009 .

[29]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[30]  Geert Bekaert,et al.  The Determinants of Stock and Bond Return Comovements , 2007 .

[31]  T. Bollerslev,et al.  Expected Stock Returns and Variance Risk Premia , 2007 .

[32]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[33]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[34]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[35]  Massimo Guidolin,et al.  An Econometric Model of Nonlinear Dynamics in the Joint Distribution of Stock and Bond Returns , 2004 .

[36]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[37]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[38]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[39]  Arnold J Stromberg,et al.  Subsampling , 2001, Technometrics.

[40]  Shinichi Morishita,et al.  On Classification and Regression , 1998, Discovery Science.

[41]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[42]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[43]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[44]  Jonathan M. Karpoff The Relation between Price Changes and Trading Volume: A Survey , 1987, Journal of Financial and Quantitative Analysis.

[45]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[46]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[47]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[48]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[49]  Anastasija Tetereva,et al.  A Forest Full of Risk Forecasts for Managing Volatility , 2022, SSRN Electronic Journal.

[50]  Luc Bauwens,et al.  Département des Sciences Économiques de l'Université catholique de Louvain Modelling Financial High Frequency Data Using Point Processes , 2019 .

[51]  Andrew J. Patton Copula Methods for Forecasting Multivariate Time Series , 2013 .

[52]  Drew D. Creal,et al.  Generalized Autoregressive Score Models , 2012 .

[53]  Drew D. Creal,et al.  Generalized Autoregressive Score Models with Applications ∗ , 2011 .

[54]  Peter Bühlmann,et al.  Tree‐structured generalized autoregressive conditional heteroscedastic models , 2001 .

[55]  Jianqing Fan,et al.  Local maximum likelihood estimation and inference , 1998 .

[56]  C. Judson Herrick,et al.  What is a machine , 1929 .