Some Variational Principles for the Metric Mean Dimension of a Semigroup Action

In this manuscript we show that the metric mean dimension of a free semigroup action satisfies three variational principles: (a) the first one is based on a definition of Shapira’s entropy, introduced in [22] for a singles dynamics and extended for a semigroup action in this note; (b) the second one treats about a definition of Katok’s entropy for a free semigroup action introduced in [8]; (c) lastly we consider the local entropy function for a free semigroup action and show that the metric mean dimension satisfies a variational principle in terms of such function. Our results are inspired in the ones obtained by [19], [28], [24] and [23].

[1]  A. Velozo,et al.  Rate distortion theory, metric mean dimension and measure theoretic entropy , 2017, 1707.05762.

[2]  Elon Lindenstrauss,et al.  Double variational principle for mean dimension , 2019, Geometric and Functional Analysis.

[3]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[4]  M. Carvalho,et al.  A variational principle for free semigroup actions , 2018, Advances in Mathematics.

[5]  Thomas P. Jacobus,et al.  Entropy Points and Applications for Free Semigroup Actions , 2021, Journal of Statistical Physics.

[6]  L. Barreira,et al.  Measures of Maximal Dimension for Hyperbolic Diffeomorphisms , 2003 .

[7]  Benjamin Weiss,et al.  Mean topological dimension , 2000 .

[8]  PAULO VARANDAS,et al.  A variational principle for the metric mean dimension of free semigroup actions , 2021, Ergodic Theory and Dynamical Systems.

[9]  A. Bufetov Topological Entropy of Free Semigroup Actions and Skew-Product Transformations , 1999 .

[10]  M. Carvalho,et al.  Semigroup Actions of Expanding Maps , 2016, 1601.04275.

[11]  Uri Shapira Measure theoretical entropy of covers , 2007, 0810.4300.

[12]  Koichi Yano A remark on the topological entropy of homeomorphisms , 1980 .

[13]  Yonatan Gutman,et al.  Around the variational principle for metric mean dimension , 2020, Studia Mathematica.

[14]  Benoît R. Kloeckner Optimal transport and dynamics of expanding circle maps acting on measures , 2010, Ergodic Theory and Dynamical Systems.

[15]  P. Walczak,et al.  ANNALES DE L’INSTITUT FOURIER , 2022 .

[16]  E. Lindenstrauss Mean dimension, small entropy factors and an embedding theorem , 1999 .

[17]  É. Ghys,et al.  Entropie geometrique des feuilletages , 1988 .

[18]  M. Carvalho,et al.  Quantitative recurrence for free semigroup actions , 2016, 1612.07082.

[19]  S. Dubuc,et al.  Fractal Geometry and Analysis , 1991 .

[20]  F. Ledrappier,et al.  A Relativised Variational Principle for Continuous Transformations , 1977 .

[21]  Yonatan Gutman,et al.  Metric Mean Dimension and Analog Compression , 2018, IEEE Transactions on Information Theory.

[22]  Wen-Chiao Cheng,et al.  Some properties on topological entropy of free semigroup action , 2018 .

[23]  Y. Pesin Dimension Theory in Dynamical Systems: Contemporary Views and Applications , 1997 .

[24]  Misha Gromov,et al.  Topological Invariants of Dynamical Systems and Spaces of Holomorphic Maps: I , 1999 .