On adaptive algorithms for maximum matching

In the fundamental Maximum Matching problem the task is to find a maximum cardinality set of pairwise disjoint edges in a given undirected graph. The fastest algorithm for this problem, due to Micali and Vazirani, runs in time $\mathcal{O}(\sqrt{n}m)$ and stands unbeaten since 1980. It is complemented by faster, often linear-time, algorithms for various special graph classes. Moreover, there are fast parameterized algorithms, e.g., time $\mathcal{O}(km\log n)$ relative to tree-width $k$, which outperform $\mathcal{O}(\sqrt{n}m)$ when the parameter is sufficiently small. We show that the Micali-Vazirani algorithm, and in fact any algorithm following the phase framework of Hopcroft and Karp, is adaptive to beneficial input structure. We exhibit several graph classes for which such algorithms run in linear time $\mathcal{O}(n+m)$. More strongly, we show that they run in time $\mathcal{O}(\sqrt{k}m)$ for graphs that are $k$ vertex deletions away from any of several such classes, without explicitly computing an optimal or approximate deletion set; before, most such bounds were at least $\Omega(km)$. Thus, any phase-based matching algorithm with linear-time phases obliviously interpolates between linear time for $k=\mathcal{O}(1)$ and the worst case of $\mathcal{O}(\sqrt{n}m)$ when $k=\Theta(n)$. We complement our findings by proving that the phase framework by itself still allows $\Omega(\sqrt{n})$ phases, and hence time $\Omega(\sqrt{n}m)$, even on paths, cographs, and bipartite chain graphs.

[1]  Frédéric Gardi,et al.  Efficient Algorithms for Disjoint Matchings among Intervals and Related Problems , 2003, DMTCS.

[2]  Rolf Niedermeier,et al.  Parameterized Aspects of Triangle Enumeration , 2017, FCT.

[3]  Rolf Niedermeier,et al.  The Power of Linear-Time Data Reduction for Maximum Matching , 2017, Algorithmica.

[4]  Guillaume Ducoffe,et al.  The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes , 2018, ISAAC.

[5]  Aleksander Madry,et al.  Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[6]  Thore Husfeldt,et al.  Computing Graph Distances Parameterized by Treewidth and Diameter , 2017, IPEC.

[7]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[8]  Raphael Yuster,et al.  Maximum Matching in Regular and Almost Regular Graphs , 2012, Algorithmica.

[9]  Feodor F. Dragan,et al.  On Greedy Matching Ordering and Greedy Matchable Graphs (Extended Abstract) , 1997, WG.

[10]  F. Glover Maximum matching in a convex bipartite graph , 1967 .

[11]  Robert Ganian,et al.  Using Neighborhood Diversity to Solve Hard Problems , 2012, ArXiv.

[12]  David Coudert,et al.  Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs , 2017, SODA.

[13]  Michael Lampis,et al.  Algorithmic Meta-theorems for Restrictions of Treewidth , 2010, Algorithmica.

[14]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs , 2016, SODA.

[15]  Andrew V. Goldberg,et al.  Maximum skew-symmetric flows and matchings , 2004, Math. Program..

[16]  Raphael Yuster,et al.  Maximum matching in graphs with an excluded minor , 2007, SODA '07.

[17]  Fedor V. Fomin,et al.  Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques , 2014, Algorithmica.

[18]  Rolf Niedermeier,et al.  Fine-Grained Algorithm Design for Matching , 2016, ArXiv.

[19]  Michal Pilipczuk,et al.  Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low Treewidth , 2015, SODA.

[20]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[21]  Rolf Niedermeier,et al.  Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs , 2015, Theor. Comput. Sci..

[22]  Yoichi Iwata,et al.  On the Power of Tree-Depth for Fully Polynomial FPT Algorithms , 2017, STACS.

[23]  Maw-Shang Chang,et al.  Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.

[24]  Henri Thuillier,et al.  An O(n) Time Algorithm for Maximum Matching in P4-Tidy Graphs , 1997, Inf. Process. Lett..

[25]  Huacheng Yu,et al.  Matching Triangles and Basing Hardness on an Extremely Popular Conjecture , 2015, STOC.

[26]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[27]  Michel Habib,et al.  Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations , 2008, ICALP.

[28]  Cheng-Hsing Yang,et al.  An O(n) Time Algorithm for Maximum Matching on Cographs , 1993, Inf. Process. Lett..

[29]  Guillaume Ducoffe,et al.  A quasi linear-time b-Matching algorithm on distance-hereditary graphs and bounded split-width graphs , 2018, ArXiv.

[30]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[31]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[32]  Stefan Kratsch,et al.  Efficient and adaptive parameterized algorithms on modular decompositions , 2018, ESA.

[33]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[35]  Vassilis Giakoumakis,et al.  Bipartite Graphs Totally Decomposable by Canonical Decomposition , 1999, Int. J. Found. Comput. Sci..

[36]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[37]  Julian Scott Yeomans,et al.  A linear time algorithm for maximum matchings in convex, bipartite graphs☆ , 1996 .

[38]  Rolf Niedermeier,et al.  Linear-Time Algorithm for Maximum-Cardinality Matching on Cocomparability Graphs , 2017, SIAM J. Discret. Math..

[39]  Jérémy Barbay,et al.  LRM-Trees: Compressed indices, adaptive sorting, and compressed permutations , 2010, Theor. Comput. Sci..

[40]  Jirí Fiala,et al.  Parameterized complexity of distance labeling and uniform channel assignment problems , 2018, Discret. Appl. Math..

[41]  Christian Komusiewicz,et al.  When can Graph Hyperbolicity be computed in Linear Time? , 2017, WADS.

[42]  Christian Komusiewicz,et al.  A More Relaxed Model for Graph-Based Data Clustering: s-Plex Editing , 2009, AAIM.

[43]  Gonzalo Navarro,et al.  On compressing permutations and adaptive sorting , 2011, Theor. Comput. Sci..

[44]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[45]  Robert Ganian,et al.  Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes , 2013, IWOCA.

[46]  Y. Daniel Liang,et al.  Finding a Maximum Matching in a Circular-Arc Graph , 1993, Inf. Process. Lett..

[47]  E TarjanRobert,et al.  Faster scaling algorithms for general graph matching problems , 1991 .

[48]  Marek Karpinski,et al.  Matching and Multidimensional Matching in Chordal and Strongly Chordal Graphs , 1998, Discret. Appl. Math..

[49]  Stefan Kratsch,et al.  Robust and adaptive search , 2017, STACS.

[50]  Rolf Niedermeier,et al.  Approximation and Tidying—A Problem Kernel for s-Plex Cluster Vertex Deletion , 2009, Algorithmica.

[51]  Norbert Blum,et al.  A New Approach to Maximum Matching in General Graphs , 1990, ICALP.

[52]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[53]  Mihai Patrascu,et al.  On the possibility of faster SAT algorithms , 2010, SODA '10.

[54]  Derick Wood,et al.  A survey of adaptive sorting algorithms , 1992, CSUR.