CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic

We have investigated the laser oscillation of 10 at.% Yb3+:LuAG ceramic pumping into the two main absorption peaks in CW and quasi-CW operation modes. Emitting at 1030 and 1046 nm the laser achieves excellent performance, delivering output powers up to 8.8 W. The highest estimated slope efficiencies are 72.6% in CW and 79% in quasi-CW. A tunability range of 57.5 nm is measured.

[1]  M. Eichhorn,et al.  High-power resonantly diode-pumped CW Er3+:YAG laser , 2008 .

[2]  Thomas Graf,et al.  Enhanced performance of thin-disk lasers by pumping into the zero-phonon line. , 2012, Optics letters.

[3]  Woohong Kim,et al.  10% Yb3+-Lu2O3 ceramic laser with 74% efficiency. , 2011, Optics letters.

[4]  I. I. Zasavitskii,et al.  Active-region designs in quantum cascade lasers , 2012 .

[5]  A. Taranov,et al.  New results on characterization of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons , 2006 .

[6]  G. Toci,et al.  Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics. , 2010, Optics express.

[7]  Jian Zhang,et al.  Yb:LuAG laser ceramics: a promising high power laser gain medium , 2012 .

[8]  Shunsuke Hosokawa,et al.  Diode-pumped mode-locked Yb(3+):Lu(2)O(3) ceramic laser. , 2003, Optics express.

[9]  Martin Nikl,et al.  Charge transfer luminescence in Yb3+-containing compounds , 2004 .

[10]  D. Tang,et al.  Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser , 2011 .

[11]  A. G. Petrosyan,et al.  Growth, spectroscopic, and laser properties of Yb 3+ -doped Lu 3 Al 5 O 12 garnet crystal , 2006 .

[12]  Daniel Vivien,et al.  A simple model for the prediction of thermal conductivity in pure and doped insulating crystals , 2003 .

[13]  Matteo Vannini,et al.  First laser oscillation and broad tunability of 1  at. % Yb-doped Sc2O3 and Lu2O3 ceramics. , 2011, Optics letters.

[14]  S. Bagayev,et al.  Stimulated Raman scattering in ``garnet'' Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions , 2011 .

[15]  Ken-ichi Ueda,et al.  CW and mode-locked operation of Yb(3+)-doped Lu3Al5O12 ceramic laser. , 2012, Optics express.

[16]  U Schramm,et al.  High-energy, ceramic-disk Yb:LuAG laser amplifier. , 2012, Optics express.

[17]  Lloyd L. Chase,et al.  Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser , 1988 .

[18]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[19]  H. Yagi,et al.  Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants , 2008 .

[20]  Matteo Vannini,et al.  High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser. , 2009, Optics express.

[21]  T. Geballe,et al.  Isotopic and Other Types of Thermal Resistance in Germanium , 1958 .

[22]  Jun Xu,et al.  LD pumped Yb:LuAG mode-locked laser with 7.63ps duration. , 2009, Optics express.

[23]  G. Toci,et al.  High efficiency laser action of 1% at. Yb3+:2O3 ceramic. , 2012, Optics express.

[24]  Bien Chann,et al.  Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  R. A. Fields,et al.  Thermal modeling of continuous‐wave end‐pumped solid‐state lasers , 1990 .

[26]  Günter Huber,et al.  Thermal and laser properties of Yb:LuAG for kW thin disk lasers. , 2010, Optics express.