Variable Kinematic Modelling of Laminated Composite Plates

A displacement-based variable kinematic global–local finite element model is developed using hierarchical, multiple assumed displacement fields at two different levels: (1) at the element level, and (2) at the mesh level. The displacement field hierarchy contains both a conventional plate expansion (2-D) and a full layerwise (3-D) expansion. Depending on the accuracy desired, the variable kinematic element can use various terms from the composite displacement field, thus creating a hierarchy of different elements having a wide range of kinematic complexity and representing a number of different mathematical models. The VKFE is then combined with the mesh superposition technique to further increase the computational efficiency and robustness of the computational algorithm. These models are used to analyse a number of laminated composite plate problems that contain localized subregions where significant 3-D stress fields exist (e.g. free-edge effects).

[1]  A.S.D. Wang,et al.  Calculation of Edge Stresses in Multi-Layer Laminates by Sub-Structuring , 1978 .

[2]  J. N. Reddy,et al.  A solid-shell transition element for geometrically non-linear analysis of laminated composite structures , 1988 .

[3]  Ahmed K. Noor,et al.  Hierarchical adaptive modeling of structural sandwiches and multilayered composite panels , 1994 .

[4]  Karan S. Surana,et al.  Transition finite elements for three‐dimensional stress analysis , 1980 .

[5]  D. Thompson,et al.  2-D to 3-D global/local finite element analysis of cross-ply composite laminates , 1990 .

[6]  C. Sun,et al.  A refined global‐local finite element analysis method , 1991 .

[7]  Anthony N. Palazotto,et al.  Nonlinear finite element analysis of thick composite plates using cubic spline functions , 1985 .

[8]  Paul Seide,et al.  An improved approximate theory for the bending of laminated plates , 1980 .

[9]  N. J. Pagano,et al.  Global-local laminate variational model , 1983 .

[10]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[11]  S. McCormick,et al.  The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .

[12]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[13]  J. N. Reddy,et al.  On refined theories of composite laminates , 1990 .

[14]  Fu-Kuo Chang,et al.  Analysis of Thick Laminated Composites , 1990 .

[15]  C. D. Mote Global‐local finite element , 1971 .

[16]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[17]  Ahmed K. Noor,et al.  Global-local methodologies and their application to nonlinear analysis , 1986 .

[18]  David R. Owen,et al.  A refined analysis of laminated plates by finite element displacement methods—I. Fundamentals and static analysis , 1987 .

[19]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[20]  J. N. Reddy,et al.  On the Generalization of Displacement-Based Laminate Theories , 1989 .

[21]  John D. Whitcomb,et al.  Application of iterative global/local finite-element analysis. Part 1: Linear analysis , 1993 .

[22]  J. N. Reddy,et al.  A generalization of two-dimensional theories of laminated composite plates† , 1987 .

[23]  Jacob Fish,et al.  The s‐version of the finite element method for multilayer laminates , 1992 .

[24]  Karan S. Surana,et al.  Geometrically non-linear formulation for the three dimensional solid-shell transition finite elements , 1982 .

[25]  R. J. Callinan,et al.  Analysis of multi-layer laminates using three-dimensional super-elements , 1984 .

[26]  J. N. Reddy,et al.  Modeling of delamination in composite laminates using a layer-wise plate theory , 1991 .

[27]  John D. Whitcomb,et al.  Reliability of the finite element method for calculating free edge stresses in composite laminates , 1982 .

[28]  Shuodao Wang,et al.  Boundary-Layer Effects in Composite Laminates: Part 2—Free-Edge Stress Solutions and Basic Characteristics , 1982 .

[29]  Jacob Fish,et al.  Adaptive s-method for linear elastostatics , 1993 .

[30]  J. N. Reddy,et al.  Behaviour of plate elements based on the first‐order shear deformation theory , 1990 .

[31]  John D. Whitcomb,et al.  Analysis of Interlaminar Stresses in Thick Composite Laminates With and Without Edge Delamination , 1985 .

[32]  Shuodao Wang,et al.  Boundary-Layer Effects in Composite Laminates: Part 1—Free-Edge Stress Singularities , 1982 .

[33]  Ted Belytschko,et al.  The spectral overlay on finite elements for problems with high gradients , 1990 .

[34]  J. Fish The s-version of the finite element method , 1992 .

[35]  C. Sun,et al.  Analysis of Thick Section Composite Laminates Using Effective Moduli , 1990 .

[36]  J. N. Reddy,et al.  A review of refined theories of laminated composite plates , 1990 .

[37]  John D. Whitcomb,et al.  Application of iterative global/local finite-element analysis. Part 2: Geometrically non-linear analysis , 1993 .