ROBUST FAULT DETECTION USING INTERVAL CONSTRAINTS SATISFACTION AND SET COMPUTATIONS 1
暂无分享,去创建一个
[1] Bernhard Rinner,et al. Online monitoring by dynamically refining imprecise models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[2] Luigi Chisci,et al. Recursive state bounding by parallelotopes , 1996, Autom..
[3] Stéphane Ploix,et al. Parameter uncertainty computation in static linear models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[4] Giuseppe Calafiore,et al. A set-valued non-linear filter for robust localization , 2001, 2001 European Control Conference (ECC).
[5] Eric Walter,et al. Guaranteed recursive non‐linear state bounding using interval analysis , 2002 .
[6] Eduardo F. Camacho,et al. Guaranteed state estimation by zonotopes , 2005, Autom..
[7] J. Norton,et al. State bounding with ellipsoidal set description of the uncertainty , 1996 .
[8] Gabriela Cembrano,et al. Optimal control of urban drainage systems. A case study , 2004 .
[9] Giuseppe Carlo Calafiore,et al. Robust filtering for discrete-time systems with bounded noise and parametric uncertainty , 2001, IEEE Trans. Autom. Control..
[10] Vicenç Puig,et al. Passive robust fault detection approaches using interval models , 2002 .
[11] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[12] Eric Walter,et al. Guaranteed non-linear estimation using constraint propagation on sets , 2001 .
[13] Eero Hyvönen,et al. Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach , 1992, Artif. Intell..
[14] J. Shamma,et al. Approximate set-valued observers for nonlinear systems , 1997, IEEE Trans. Autom. Control..