Hidden Markov mesh random field models in image analysis

This paper addresses the image modeling problem under the assumption that images can be represented by third-order, hidden Markov mesh random field models. The range of applications of the techniques described hereafter comprises the restoration of binary images, the modeling and compression of image data, as well as the segmentation of gray-level or multi-spectral images, and image sequences under the short-range motion hypothesis. We outline coherent approaches to both the problems of image modeling (pixel labeling) and estimation of model parameters (learning). We derive a real-time labeling algorithm-based on a maximum, marginal a posteriori probability criterion-for a hidden third-order Markov mesh random field model. Our algorithm achieves minimum time and space complexities simultaneously, and we describe what we believe to be the most appropriate data structures to implement it. Critical aspects of the computer simulation of a real-time implementation are discussed, down to the computer code level...

[1]  John Haslett,et al.  Maximum likelihood discriminant analysis on the plane using a Markovian model of spatial context , 1985, Pattern Recognit..

[2]  D. K. Pickard A curious binary lattice process , 1977, Journal of Applied Probability.

[3]  Devijver,et al.  1 - Champs aléatoires de Pickard et modélisation d'images digitales , 1988 .

[4]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[5]  B. Chalmond Image restoration using an estimated Markov model , 1988 .

[6]  Ellis Horowitz,et al.  Fundamentals of Data Structures in Pascal , 1984 .

[7]  P. A. Devijver,et al.  Real-time restoration and segmentation algorithms for hidden Markov mesh random fields image models , 1988 .

[8]  R. Chellappa Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing , 1989 .

[9]  Pierre A. Devijver,et al.  Image Segmentation Using Causal Markov Random Field Models , 1988, Pattern Recognition.

[10]  John W. Woods,et al.  Image Estimation Using Doubly Stochastic Gaussian Random Field Models , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Pierre A. Devijver,et al.  Learning the parameters of a hidden Markov random field image model: A simple example , 1987 .

[12]  Pierre A. Devijver,et al.  Baum's forward-backward algorithm revisited , 1985, Pattern Recognit. Lett..

[13]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[14]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Ishwar K. Sethi,et al.  Feature Point Matching Using Temporal Smoothness in Velocity , 1987 .

[17]  P. Devijver PROBABILISTIC LABELING IN A HIDDEN SECOND ORDER MARKOV MESH , 1986 .

[18]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[19]  Vinciane Lacroix,et al.  Pixel labeling in a second-order markov mesh , 1987 .

[20]  David B. Cooper,et al.  Simple Parallel Hierarchical and Relaxation Algorithms for Segmenting Noncausal Markovian Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  J. Besag Nearest‐Neighbour Systems and the Auto‐Logistic Model for Binary Data , 1972 .

[22]  D. K. Pickard,et al.  Unilateral Markov fields , 1980, Advances in Applied Probability.

[23]  Theodosios Pavlidis,et al.  Structural pattern recognition , 1977 .

[24]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[26]  S. Geman,et al.  Locating texture and object boundaries , 1987 .

[27]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[28]  John W. Woods,et al.  On the relationship of the Markov mesh to the NSHP Markov chain , 1987, Pattern Recognit. Lett..