Silicon nanowires: where mechanics and optics meet at the nanoscale
暂无分享,去创建一个
Javier Tamayo | Montserrat Calleja | Valerio Pini | Oscar Malvar | Daniel Ramos | Eduardo Gil-Santos | Jose M. Llorens | Alvaro San Paulo | M. Calleja | J. Tamayo | J. Llorens | D. Ramos | Á. S. Paulo | E. Gil-Santos | V. Pini | O. Malvar | Ó. Malvar
[1] M. Roukes,et al. Noise processes in nanomechanical resonators , 2002 .
[2] Anja Boisen,et al. Design & fabrication of cantilever array biosensors , 2009 .
[3] Seung-Man Yang,et al. Nanowire-based single-cell endoscopy. , 2012, Nature nanotechnology.
[4] J. E. Stern,et al. Force microscope using a fiber‐optic displacement sensor , 1988 .
[5] M. Roukes,et al. Single-protein nanomechanical mass spectrometry in real time , 2012, Nature nanotechnology.
[6] M. Calleja,et al. Biosensors Based on Nanomechanical Systems , 2013 .
[7] Christian Leiterer,et al. Optical properties of individual silicon nanowires for photonic devices. , 2010, ACS nano.
[8] M. Calleja,et al. Tapered silicon nanowires for enhanced nanomechanical sensing , 2013 .
[9] M. Calleja,et al. Underlying mechanisms of the self-sustained oscillation of a nanomechanical stochastic resonator in a liquid , 2007 .
[10] Charles M. Lieber,et al. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. , 2013, Nano letters.
[11] P. Ashby,et al. High sensitivity deflection detection of nanowires. , 2010, Physical review letters.
[12] M. Roukes,et al. Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.
[13] Paul Steinvurzel,et al. Multicolored vertical silicon nanowires. , 2011, Nano letters.
[14] Christian Schönenberger,et al. A differential interferometer for force microscopy , 1989 .
[15] Vladimir S. Ilchenko,et al. Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .
[16] M. Calleja,et al. Optomechanics with silicon nanowires by harnessing confined electromagnetic modes. , 2012, Nano letters.
[17] L. Lauhon,et al. Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry , 2008 .
[18] M. Calleja,et al. Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers. , 2009, Nano letters.
[19] Devrez Mehmet Karabacak,et al. Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems , 2005 .
[20] T. Kippenberg,et al. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.
[21] Linyou Cao,et al. Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.
[22] Jacob T. Robinson,et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells , 2010, Proceedings of the National Academy of Sciences.
[23] Ivan Favero,et al. Optomechanics of deformable optical cavities , 2009 .
[24] D. Rugar,et al. Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.
[25] J. Chaste,et al. A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.
[26] Michael L. Roukes,et al. Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .
[27] K. Vahala,et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.
[28] Ricardo Garcia,et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. , 2010, Nature nanotechnology.
[29] Shashank Sharma,et al. Mechanical resonance of clamped silicon nanowires measured by optical interferometry , 2008 .
[30] H. Craighead,et al. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.