Duality for distributive bisemilattices

We establish a duality between distributive bisemilattices and certain compact left normal bands. The main technique in the proof utilizes the idea of Plonka sums.

[1]  Jerzy Płonka,et al.  On distributive quad-lattices , 1967 .

[2]  R. Padmanabhan Regular identities in lattices , 1971 .

[3]  G. Rota Studies in foundations and combinatorics , 1978 .

[4]  L. Nachbin Topology and order , 1965 .

[5]  Anna B. Romanowska,et al.  Modal theory: An algebraic approach to order, geometry, and convexity , 1985 .

[6]  A. Romanowska Constructing and Reconstructing of Algebras , 1985 .

[7]  Klaus Keimel,et al.  A general character theory for partially ordered sets and lattices , 1972 .

[8]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[9]  Anna B. Romanowska,et al.  On the structure of semilattice sums , 1991 .

[10]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[11]  M. Stone,et al.  The Theory of Representation for Boolean Algebras , 1936 .

[12]  Jerzy Płonka,et al.  Some remarks on sums of direct systems of algebras , 1968 .

[13]  M. Stone The theory of representations for Boolean algebras , 1936 .

[14]  J. Gerhard Some subdirectly irreducible idempotent semigroups , 1972 .

[15]  R. Padmanabhan,et al.  Subdirect decomposition of Płonka sums , 1972 .

[16]  J. A. Kalman,et al.  Subdirect decomposition of distributive quasilattices , 1971 .

[17]  Naoki Kimura Note on idempotent semigroups, III , 1958 .

[18]  Hilary A. Priestley,et al.  Ordered Topological Spaces and the Representation of Distributive Lattices , 1972 .

[19]  Raymond Balbes A representation theorem for distributive quasi-lattices , 1970 .

[20]  S. Lane Categories for the Working Mathematician , 1971 .

[21]  Jerzy Płonka,et al.  On a method of construction of abstract algebras , 1967 .