A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

[1]  H. Fukunaga,et al.  A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity , 2011 .

[2]  T. Ding,et al.  Effects of carboxyl radical on electrical resistance of multi-walled carbon nanotube filled silicone rubber composite under pressure , 2010 .

[3]  M. Cullinan,et al.  Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment , 2010 .

[4]  Olfa Kanoun,et al.  Influence of processing parameters on properties of strain sensors based on carbon nanotube films , 2010, 2010 7th International Multi- Conference on Systems, Signals and Devices.

[5]  N. Hu,et al.  Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor , 2010 .

[6]  Satish Nagarajaiah,et al.  Strain sensing using a multiwalled carbon nanotube film , 2009 .

[7]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[8]  N. Hu,et al.  Tunneling effect in a polymer/carbon nanotube nanocompositestrain sensor , 2008 .

[9]  Karl Schulte,et al.  Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix , 2008 .

[10]  Tsu-Wei Chou,et al.  Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks , 2008, Nanotechnology.

[11]  C. Levy,et al.  Multiwalled carbon nanotube film for strain sensing , 2008, Nanotechnology.

[12]  Giang Truong Pham,et al.  Characterization and modeling of piezo-resistive properties of carbon nanotube-based conductive polymer composites , 2008 .

[13]  J. Zavickis,et al.  Polyisoprene—multi-wall carbon nanotube composites for sensing strain , 2007 .

[14]  Electric resistivity of multi-walled carbon nanotubes at high temperatures , 2007 .

[15]  N. Kotov,et al.  Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing , 2007 .

[16]  Z. Chang,et al.  Probing the intrinsic conductivity of multiwalled carbon nanotubes , 2006 .

[17]  C. Hierold,et al.  Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. , 2006, Nano letters.

[18]  Mark J. Schulz,et al.  A carbon nanotube strain sensor for structural health monitoring , 2006 .

[19]  Nader Jalili,et al.  Reinforcement of Piezoelectric Polymers with Carbon Nanotubes: Pathway to Next-generation Sensors , 2006 .

[20]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[21]  Chuck Zhang,et al.  Nanotailored Thermoplastic/Carbon Nanotube Composite Strain Sensor , 2006 .

[22]  N. Kotov,et al.  Conformable Single-Walled Carbon Nanotube Thin Film Strain Sensors for Structural Monitoring , 2006 .

[23]  Qian Wang,et al.  Piezoresistance of carbon nanotubes on deformable thin-film membranes , 2005 .

[24]  N. Koratkar,et al.  Temperature effects on resistance of aligned multiwalled carbon nanotube films. , 2004, Journal of nanoscience and nanotechnology.

[25]  Satish Nagarajaiah,et al.  Carbon Nanotube Film Sensors , 2004 .

[26]  Satish Nagarajaiah,et al.  Nanotube film based on single-wall carbon nanotubes for strain sensing , 2004 .

[27]  F. Mila,et al.  Strain induced correlation gaps in carbon nanotubes , 2003, cond-mat/0310282.

[28]  Li Yong,et al.  Piezoresistive Effect of Doped carbon Nanotube/Cellulose Films , 2003 .

[29]  H. Dai,et al.  Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. , 2003, Physical review letters.

[30]  P. McEuen,et al.  Tuning carbon nanotube band gaps with strain. , 2002, Physical review letters.

[31]  W. L. Wang,et al.  Piezoresistive effect in carbon nanotube films , 2003 .

[32]  C. Berger,et al.  Multiwalled carbon nanotubes are ballistic conductors at room temperature , 2002 .

[33]  Amitesh Maiti,et al.  Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. , 2002, Physical review letters.

[34]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[35]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[36]  楠見 晴重,et al.  Monitoring system of tension strain on rock slope by optical strain sensor (耐震・免震・制震構造と地震防災システムの構築プロジェクト) , 2001 .

[37]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[38]  Arkani-Hamed,et al.  The universe's unseen dimensions , 2000, Scientific American.

[39]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[40]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[41]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[42]  Kong,et al.  Controllable reversibility of an sp(2) to sp(3) transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? , 2000, Physical review letters.

[43]  Robert C. Haddon,et al.  Nanotube composite carbon fibers , 1999 .

[44]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[45]  M. P. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1999 .

[46]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[47]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[48]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[49]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[50]  A. Charlier,et al.  Uniaxial-stress effects on the electronic properties of carbon nanotubes , 1997 .

[51]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[52]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[53]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[54]  C. H. Chen,et al.  Defects in Carbon Nanostructures , 1994, Science.

[55]  David Tománek,et al.  Structural rigidity and low frequency vibrational modes of long carbon tubules , 1993 .

[56]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[57]  Ping Sheng,et al.  Fluctuation-Induced Tunneling Conduction in Carbon-Polyvinylchloride Composites , 1978 .

[58]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .