Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi

To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as “other venom components”. A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.

[1]  H. Galehdari,et al.  First Transcriptome Analysis of Iranian Scorpion, Mesobuthus Eupeus Venom Gland , 2018, Iranian journal of pharmaceutical research : IJPR.

[2]  A. Pal,et al.  Mass spectrometry-assisted venom profiling of Hypnale hypnale found in the Western Ghats of India incorporating de novo sequencing approaches. , 2018, International journal of biological macromolecules.

[3]  Ernesto Ortiz,et al.  The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses , 2018, Toxicon : official journal of the International Society on Toxinology.

[4]  D. Baiwir,et al.  Proteopeptidomic, Functional and Immunoreactivity Characterization of Bothrops moojeni Snake Venom: Influence of Snake Gender on Venom Composition , 2018, Toxins.

[5]  Shuogui Xu,et al.  De novo transcriptomic analysis of the venomous glands from the scorpion Heterometrus spinifer revealed unique and extremely high diversity of the venom peptides , 2018, Toxicon : official journal of the International Society on Toxinology.

[6]  D. Rokyta,et al.  Venom‐gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family , 2018, Toxicon : official journal of the International Society on Toxinology.

[7]  G. Rosiński,et al.  Toxic activity and protein identification from the parotoid gland secretion of the common toad Bufo bufo. , 2018, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[8]  L. Possani,et al.  Intraspecific variation of Centruroides sculpturatus scorpion venom from two regions of Arizona. , 2018, Archives of biochemistry and biophysics.

[9]  L. Possani,et al.  A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies , 2017, Toxins.

[10]  K. Masuko,et al.  Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola , 2017, Toxins.

[11]  L. Possani,et al.  Arthropod toxins acting on neuronal potassium channels , 2017, Neuropharmacology.

[12]  J. Enghild,et al.  Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion , 2017, BMC Genomics.

[13]  L. Possani,et al.  Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz‐Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae) , 2017, Toxicon : official journal of the International Society on Toxinology.

[14]  N. Tan,et al.  Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty , 2017, PeerJ.

[15]  F. Kazemi-Lomedasht,et al.  Corrigendum to "The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus" [Toxicon 125 (2017) 123-130]. , 2017, Toxicon : official journal of the International Society on Toxinology.

[16]  D. Rokyta,et al.  Venom‐gland transcriptomics and venom proteomics of the black‐back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity , 2017, Toxicon : official journal of the International Society on Toxinology.

[17]  C. Shaw,et al.  Novel Kazal-type proteinase inhibitors from the skin secretion of the Splendid leaf frog, Cruziohyla calcarifer , 2017, EuPA open proteomics.

[18]  Timothy L. Tickle,et al.  A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. , 2017, Cell reports.

[19]  Lei Zhang,et al.  Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. , 2017, Journal of proteomics.

[20]  P. Ray,et al.  Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species , 2016, Molecular human reproduction.

[21]  L. Possani,et al.  Venom gland transcriptomic and venom proteomic analyses of the scorpion 1 , 2017 .

[22]  M. Walch,et al.  Killing Bacteria with Cytotoxic Effector Proteins of Human Killer Immune Cells: Granzymes, Granulysin, and Perforin. , 2017, Methods in molecular biology.

[23]  F. Kazemi-Lomedasht,et al.  The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus , 2017, Toxicon : official journal of the International Society on Toxinology.

[24]  L. Possani,et al.  Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components , 2016, Toxins.

[25]  H. Galehdari,et al.  First venom gland transcriptomic analysis of Iranian yellow scorpion "Odonthubuthus doriae" with some new findings. , 2016, Toxicon : official journal of the International Society on Toxinology.

[26]  R. Lai,et al.  Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom. , 2016, Chinese journal of natural medicines.

[27]  C. Valdivia,et al.  Structure–function relationships of peptides forming the calcin family of ryanodine receptor ligands , 2016, The Journal of general physiology.

[28]  Anton O. Chugunov,et al.  Kalium: a database of potassium channel toxins from scorpion venom , 2016, Database J. Biol. Databases Curation.

[29]  T. Pons,et al.  The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels , 2016, Toxins.

[30]  L. Possani,et al.  Scorpions from Mexico: From Species Diversity to Venom Complexity , 2015, Toxins.

[31]  Z. Cao,et al.  A new Kunitz-type plasmin inhibitor from scorpion venom. , 2015, Toxicon : official journal of the International Society on Toxinology.

[32]  L. Possani,et al.  Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity , 2015, Peptides.

[33]  E. Arantes,et al.  Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology , 2015, Journal of Venomous Animals and Toxins including Tropical Diseases.

[34]  Mingkun Yang,et al.  Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. , 2015, Journal of proteomics.

[35]  L. Prendini,et al.  Phylogeny of the North American vaejovid scorpion subfamily Syntropinae Kraepelin, 1905, based on morphology, mitochondrial and nuclear DNA , 2015, Cladistics : the international journal of the Willi Hennig Society.

[36]  H. Miyagawa,et al.  Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae and determination of its disulfide bonding pattern , 2015, Journal of peptide science : an official publication of the European Peptide Society.

[37]  V. Quintero-Hernández,et al.  Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion , 2015, PloS one.

[38]  I. Junqueira-de-Azevedo,et al.  The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. , 2015, Toxicon : official journal of the International Society on Toxinology.

[39]  V. Quintero-Hernández,et al.  Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus , 2015, PloS one.

[40]  Ernesto Ortiz,et al.  Scorpion venom components as potential candidates for drug development , 2014, Toxicon.

[41]  H. Inagaki Snake Venom Protease Inhibitors: Enhanced Identification, Expanding Biological Function, and Promising Future , 2015 .

[42]  W. Fontes,et al.  The Crude Skin Secretion of the Pepper Frog Leptodactylus labyrinthicus Is Rich in Metallo and Serine Peptidases , 2014, PloS one.

[43]  L. Felicori,et al.  Molecular, Immunological, and Biological Characterization of Tityus serrulatus Venom Hyaluronidase: New Insights into Its Role in Envenomation , 2014, PLoS neglected tropical diseases.

[44]  A. Almaaytah,et al.  Scorpion venom peptides with no disulfide bridges: A review , 2014, Peptides.

[45]  Rafael Sutti,et al.  Purification and characterization of a hyaluronidase from venom of the spider Vitalius dubius (Araneae, Theraphosidae) , 2014, Journal of Venomous Animals and Toxins including Tropical Diseases.

[46]  L. Prendini,et al.  Redefinition and Generic Revision of the North American Vaejovid Scorpion Subfamily Syntropinae Kraepelin, 1905, with Descriptions of Six New Genera , 2013 .

[47]  K. Sobha,et al.  Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma. , 2013 .

[48]  BenNasr Hmed,et al.  Scorpion Peptides: Potential Use for New Drug Development , 2013, Journal of toxicology.

[49]  I. Vetter,et al.  Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins , 2013, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Maili Liu,et al.  Genomic and Structural Characterization of Kunitz-Type Peptide LmKTT-1a Highlights Diversity and Evolution of Scorpion Potassium Channel Toxins , 2013, PloS one.

[51]  L. Faccioli,et al.  Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response. , 2013, International immunopharmacology.

[52]  V. Quintero-Hernández,et al.  Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. , 2013, Toxicon : official journal of the International Society on Toxinology.

[53]  R. Liu,et al.  Snake venom-like waprin from the frog of Ceratophrys calcarata contains antimicrobial function. , 2013, Gene.

[54]  M. Gurevitz Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. , 2012, Toxicon : official journal of the International Society on Toxinology.

[55]  Y. Rosenstein,et al.  Vm24, a Natural Immunosuppressive Peptide, Potently and Selectively Blocks Kv1.3 Potassium Channels of Human T Cells , 2012, Molecular Pharmacology.

[56]  R. C. Rodríguez de la Vega,et al.  Structure, function, and chemical synthesis of Vaejovis mexicanus peptide 24: a novel potent blocker of Kv1.3 potassium channels of human T lymphocytes. , 2012, Biochemistry.

[57]  D. P. Jenkins,et al.  Purification, molecular cloning and functional characterization of HelaTx1 (Heterometrus laoticus): the first member of a new κ-KTX subfamily. , 2012, Biochemical pharmacology.

[58]  V. Quintero-Hernández,et al.  Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae , 2012, Peptides.

[59]  M. F. Fernandes-Pedrosa,et al.  Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey , 2012, BMC Genomics.

[60]  A. van Dorsselaer,et al.  Heminecrolysin, the first hemolytic dermonecrotic toxin purified from scorpion venom. , 2011, Toxicon : official journal of the International Society on Toxinology.

[61]  Thalita S. Camargos,et al.  The new kappa-KTx 2.5 from the scorpion Opisthacanthus cayaporum , 2011, Peptides.

[62]  Jennifer J. Smith,et al.  Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif , 2011, Proceedings of the National Academy of Sciences.

[63]  K. Wittkowski,et al.  Hyaluronidase and Hyaluronan in Insect Venom Allergy , 2011, International Archives of Allergy and Immunology.

[64]  A. Rodríguez‐Romero,et al.  Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. , 2011, Toxicon : official journal of the International Society on Toxinology.

[65]  L. Hazlett,et al.  Defensins in innate immunity , 2010, Cell and Tissue Research.

[66]  Jingze Liu,et al.  A novel serine protease inhibitor from the venom of Vespa bicolor Fabricius. , 2009, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[67]  D. J. Merriner,et al.  Cysteine‐rich secretory proteins are not exclusively expressed in the male reproductive tract , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[68]  M. O’Bryan,et al.  The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. , 2008, Endocrine reviews.

[69]  H. Miyagawa,et al.  Characterization of peptide components in the venom of the scorpion Liocheles australasiae (Hemiscorpiidae). , 2007, Toxicon : official journal of the International Society on Toxinology.

[70]  R. C. Rodríguez de la Vega,et al.  Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones) , 2007, BMC Genomics.

[71]  M. Ronjat,et al.  Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. , 2007, The Biochemical journal.

[72]  L. Possani,et al.  Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. , 2007, Toxicon : official journal of the International Society on Toxinology.

[73]  L. Possani,et al.  Wide phylogenetic distribution of Scorpine and long-chain β-KTx-like peptides in scorpion venoms: Identification of “orphan” components , 2007, Peptides.

[74]  R. Hancock,et al.  Peptide Antimicrobial Agents , 2006, Clinical Microbiology Reviews.

[75]  S. Hedges,et al.  Early evolution of the venom system in lizards and snakes , 2006, Nature.

[76]  J. Gutiérrez,et al.  Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. , 2005, Toxicon : official journal of the International Society on Toxinology.

[77]  J. Tytgat,et al.  Phaiodotoxin, a novel structural class of insect-toxin isolated from the venom of the Mexican scorpion Anuroctonus phaiodactylus. , 2004, European journal of biochemistry.

[78]  R. C. Rodríguez de la Vega,et al.  Current views on scorpion toxins specific for K+-channels. , 2004, Toxicon : official journal of the International Society on Toxinology.

[79]  A. Scaloni,et al.  Antimicrobial peptide induction in the haemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury , 2004, Cellular and Molecular Life Sciences CMLS.

[80]  Shunyi Zhu,et al.  Evolutionary trace analysis of scorpion toxins specific for K‐channels , 2003, Proteins.

[81]  J. Ramírez-Ávila,et al.  Purification and partial characterization of phospholipases A2 from Bothrops asper (barba amarilla) snake venom from Chiriguaná (Cesar, Colombia) , 2004 .

[82]  V. Fet,et al.  The systematics of the scorpion subfamily Uroctoninae (Scorpiones: Chactidae). , 2004 .

[83]  P. Kuchel,et al.  Identification of a Novel Family of Proteins in Snake Venoms , 2003, Journal of Biological Chemistry.

[84]  L. Kwak,et al.  Roles of antimicrobial peptides such as defensins in innate and adaptive immunity , 2003, Annals of the rheumatic diseases.

[85]  Shunyi Zhu,et al.  The FASEB Journal express article10.1096/fj.02-1044fje. Published online July 3, 2003. Evolutionary origin of inhibitor cystine knot peptides , 2022 .

[86]  H. Kwok,et al.  Unmasking venom gland transcriptomes in reptile venoms. , 2002, Analytical biochemistry.

[87]  H. Aréchigá,et al.  Cn11, the first example of a scorpion toxin that is a true blocker of Na(+) currents in crayfish neurons. , 2002, The Journal of experimental biology.

[88]  V. Hwa,et al.  The Insulin-like Growth Factor-binding Protein (igfbp) Superfamily* , 2022 .

[89]  E. Sánchez,et al.  Natural protease inhibitors to hemorrhagins in snake venoms and their potential use in medicine. , 1999, Toxicon : official journal of the International Society on Toxinology.

[90]  P. Lundy,et al.  Effect of ω-agatoxin-IVA on autonomic neurotransmission , 1994 .

[91]  P. Lundy,et al.  Effect of omega-agatoxin-IVA on autonomic neurotransmission. , 1994, European journal of pharmacology.

[92]  W. Lederer,et al.  Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Y. Belyi Phospholipases. , 1991, Methods in enzymology.

[94]  S. C. Williams,et al.  Scorpion bionomics. , 1987, Annual review of entomology.

[95]  Stanley C. Williams Scorpions of Baja California, Mexico, and adjacent islands , 1980 .

[96]  E. Habermann,et al.  A sensitive and specific plate test for the quantitation of phospholipases. , 1972, Analytical biochemistry.

[97]  K. Ádám,et al.  Scorpion venom. , 1959, Zeitschrift fur Tropenmedizin und Parasitologie.

[98]  S. Tolksdorf,et al.  The turbidimetric assay of hyaluronidase. , 1949, The Journal of laboratory and clinical medicine.