A mathematical framework to model migration of a cell population in the extracellular matrix

11.

[1]  K. Painter Modelling cell migration strategies in the extracellular matrix , 2009, Journal of mathematical biology.

[2]  Luigi Preziosi,et al.  Modelling the motion of a cell population in the extracellular matrix , 2007 .

[3]  K. Winzer,et al.  Look who's talking: communication and quorum sensing in the bacterial world , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  T. Hillen M5 mesoscopic and macroscopic models for mesenchymal motion , 2006, Journal of mathematical biology.

[5]  Arnaud Chauviere,et al.  On the discrete kinetic theory for active particles. Mathematical tools , 2006, Math. Comput. Model..

[6]  Barry D. Hughes,et al.  Modelling Directional Guidance and Motility Regulation in Cell Migration , 2006, Bulletin of mathematical biology.

[7]  C. Schmeiser,et al.  Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms , 2005, Journal of mathematical biology.

[8]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[9]  R. Bjerkvig,et al.  Evidence for a secreted chemorepellent that directs glioma cell invasion. , 2004, Journal of neurobiology.

[10]  P. Friedl Prespecification and plasticity: shifting mechanisms of cell migration. , 2004, Current opinion in cell biology.

[11]  Peter Friedl,et al.  Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. , 2003, Blood.

[12]  R. Tranquillo,et al.  A self-consistent cell flux expression for simultaneous chemotaxis and contact guidance in tissues , 2000, Journal of mathematical biology.

[13]  P. Friedl,et al.  The biology of cell locomotion within three-dimensional extracellular matrix , 2000, Cellular and Molecular Life Sciences CMLS.

[14]  Gabor T. Herman,et al.  Recovery of the Absorption Coefficient from Diffused Reflected Light Using a Discrete Diffusive Model , 1998, SIAM J. Appl. Math..

[15]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[16]  N. Hill,et al.  A biased random walk model for the trajectories of swimming micro-organisms. , 1997, Journal of theoretical biology.

[17]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[18]  Leah Edelstein-Keshet,et al.  Selecting a common direction , 1995 .

[19]  J. Davis,et al.  Haptotactic activity of fibronectin on lymphocyte migration in vitro. , 1990, Cellular immunology.

[20]  T. Hillen,et al.  A user’s guide to PDE models for chemotaxis , 2009, Journal of mathematical biology.

[21]  B. Perthame,et al.  Mathematik in den Naturwissenschaften Leipzig An Integro-Differential Equation Model for Alignment and Orientational Aggregation , 2007 .

[22]  M. Westphal,et al.  Contactin is expressed in human astrocytic gliomas and mediates repulsive effects , 2006, Glia.

[23]  H. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[24]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..

[25]  Daniel Grünbaum,et al.  Advection-Diffusion Equations for Internal State-Mediated Random Walks , 2000, SIAM J. Appl. Math..

[26]  Victor H. Barocas,et al.  A Continuum Model for the Role of Fibroblast Contact Guidance in Wound Contraction , 1997 .

[27]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[28]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[29]  Politecnico,et al.  Networks and Heterogeneous Media Modeling Cell Movement in Anisotropic and Heterogeneous Network Tissues , 2022 .