A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem

This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

[1]  V. Jorge Leon,et al.  Strength and adaptability of problem-space based neighborhoods for resource-constrained scheduling , 1995 .

[2]  Arno Sprecher,et al.  Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements , 2000 .

[3]  Celso C. Ribeiro,et al.  A hybrid genetic algorithm for the weight setting problem in OSPF/IS‐IS routing , 2005, Networks.

[4]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[5]  J. C. Bean Genetics and random keys for sequencing amd optimization , 1993 .

[6]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[7]  Rainer Kolisch,et al.  Project Scheduling under Resource Constraints: Efficient Heuristics for Several Problem Classes , 1995 .

[8]  Peter Brucker,et al.  A linear programming and constraint propagation-based lower bound for the RCPSP , 2000, Eur. J. Oper. Res..

[9]  Y. Kochetov,et al.  Evolutionary Local Search with Variable Neighborhood for the Resource Constrained Project Scheduling Problem , 2003 .

[10]  Peter Brucker,et al.  Complex Scheduling , 2006 .

[11]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[12]  Bert De Reyck,et al.  A hybrid scatter search/electromagnetism meta-heuristic for project scheduling , 2006, Eur. J. Oper. Res..

[13]  Rainer Kolisch,et al.  Adaptive search for solving hard project scheduling problems , 1996 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Fayez F. Boctor,et al.  Resource-constrained project scheduling by simulated annealing , 1996 .

[16]  José Fernando Gonçalves,et al.  A Hybrid Genetic Algorithm for Assembly Line Balancing , 2002, J. Heuristics.

[17]  Peter Brucker,et al.  Lower bounds for resource-constrained project scheduling problems , 2003, Eur. J. Oper. Res..

[18]  K. Bouleimen,et al.  A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version , 2003, Eur. J. Oper. Res..

[19]  Rainer Kolisch Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1994 .

[20]  Rainer Kolisch,et al.  Efficient priority rules for the resource-constrained project scheduling problem , 1996 .

[21]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[22]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[23]  Christian Artigues,et al.  LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search , 2004, Ann. Oper. Res..

[24]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[25]  Krzysztof Fleszar,et al.  Solving the resource-constrained project scheduling problem by a variable neighbourhood search , 2004, Eur. J. Oper. Res..

[26]  Mauricio G. C. Resende,et al.  Biased random-key genetic algorithms for combinatorial optimization , 2011, J. Heuristics.

[27]  Peter Brucker,et al.  A branch and bound algorithm for the resource-constrained project scheduling problem , 1998, Eur. J. Oper. Res..

[28]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[29]  Francisco Ballestín,et al.  Justification and RCPSP: A technique that pays , 2005, Eur. J. Oper. Res..

[30]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[31]  Armin Scholl,et al.  Scattered branch and bound: an adaptive search strategy applied to resource-constrained project scheduling , 1998 .

[32]  Robert J Willis,et al.  An iterative scheduling technique for resource-constrained project scheduling , 1992 .

[33]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .

[34]  Erik Demeulemeester,et al.  New Benchmark Results for the Resource-Constrained Project Scheduling Problem , 1997 .

[35]  José Jorge de Magalhães Mendes,et al.  Sistema de apoio à decisão para planeamento de sistemas de produção tipo projecto , 2003 .

[36]  V. Maniezzo,et al.  An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation , 1998 .

[37]  Christian Artigues,et al.  Constraint-Propagation-Based Cutting Planes: An Application to the Resource-Constrained Project Scheduling Problem , 2005, INFORMS J. Comput..

[38]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[39]  R. Kolisch,et al.  Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis , 1998 .

[40]  Sönke Hartmann,et al.  A competitive genetic algorithm for resource-constrained project scheduling , 1998 .

[41]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[42]  Dale F. Cooper,et al.  Heuristics for Scheduling Resource-Constrained Projects: An Experimental Investigation , 1976 .

[43]  P. Brucker,et al.  Tabu Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem , 1999 .

[44]  Peter Brucker,et al.  Complex Scheduling (GOR-Publications) , 2006 .

[45]  Zhi-Long Chen Solution algorithms for the parallel replacement problem under economy of scale , 1998 .

[46]  Saïd Salhi,et al.  A Tabu Search Approach for the Resource Constrained Project Scheduling Problem , 1998, J. Heuristics.

[47]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[48]  Rainer Kolisch,et al.  Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .

[49]  José Fernando Gonçalves,et al.  A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem , 2007, Eur. J. Oper. Res..

[50]  Rainer Kolisch,et al.  Project Scheduling under Resource Constraints , 1995 .

[51]  Marc Uetz,et al.  On the generation of circuits and minimal forbidden sets , 2005, Math. Program..

[52]  Hartmut Schmeck,et al.  Experiences with fine‐grainedparallel genetic algorithms , 1999, Ann. Oper. Res..

[53]  F. F. Boctor,et al.  Some efficient multi-heuristic procedures for resource-constrained project scheduling , 1990 .

[54]  Ramón Alvarez-Valdés Olaguíbel,et al.  Chapter 5 – HEURISTIC ALGORITHMS FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING: A REVIEW AND AN EMPIRICAL ANALYSIS , 1989 .

[55]  Sönke Hartmann,et al.  A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .

[56]  Toshihide Ibaraki,et al.  Formulation and Tabu Search Algorithm for the Resource Constrained Project Scheduling Problem , 2002 .

[57]  Yeong-Dae Kim,et al.  Search Heuristics for Resource Constrained Project Scheduling , 1996 .

[58]  Robert Klein,et al.  Scheduling of Resource-Constrained Projects , 1999 .

[59]  María Pilar Tormos,et al.  A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling , 2001, Ann. Oper. Res..

[60]  Fayez F. Boctor,et al.  A Tabu Search Algorithm for the Resource-constrained Project Scheduling Problem , 2004 .

[61]  Mario Vanhoucke,et al.  A Bi-population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem , 2005, ICCSA.

[62]  K. Haase,et al.  Experiences with Fine-Grained Parallel Genetic Algorithms , 1996 .

[63]  Mauricio G. C. Resende,et al.  An evolutionary algorithm for manufacturing cell formation , 2004, Comput. Ind. Eng..

[64]  Mauricio G. C. Resende,et al.  Discrete Optimization A hybrid genetic algorithm for the job shop scheduling problem , 2005 .

[65]  Roman Słowiński,et al.  DSS for multiobjective project scheduling , 1994 .

[66]  E. W. Davis,et al.  Multiple Resource–Constrained Scheduling Using Branch and Bound , 1978 .

[67]  Francisco Ballestín,et al.  A Population-Based Approach to the Resource-Constrained Project Scheduling Problem , 2004, Ann. Oper. Res..

[68]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[69]  Edward W. Davis,et al.  A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling , 1975 .

[70]  V. Valls,et al.  A Hybrid Genetic Algorithm for the RCPSP with the Peak Crossover Operator , 2002 .

[71]  Armin Scholl,et al.  PROGRESS: Optimally solving the generalized resource-constrained project scheduling problem , 2000, Math. Methods Oper. Res..

[72]  Mauricio G. C. Resende,et al.  A random key based genetic algorithm for the resource constrained project scheduling problem , 2009, Comput. Oper. Res..

[73]  Celso C. Ribeiro,et al.  Design of Survivable Networks: A survey , 2005 .

[74]  S. Selcuk Erenguc,et al.  Project Scheduling Problems: A Survey , 1993 .

[75]  Mario Vanhoucke,et al.  A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem , 2005 .