Conformal transformations of Cahen-Wallach spaces

We study conformal transformations of indecomposable Lorentzian symmetric spaces of non-constant sectional curvature, the so-called Cahen-Wallach spaces. When a Cahen-Wallach space is conformally curved, its conformal transformations are homotheties. Using this we show that a conformal transformation of a conformally curved Cahen-Wallach space is essential if and only if it has a fixed point. Then we explore the possibility of properly discontinuous groups of conformal transformations acting with a compact orbit space on a conformally curved Cahen-Wallach space. We show that any such group cannot centralise an essential homothety and that for Cahen-Wallach spaces of imaginary type must be contained within the isometries.

[1]  Thomas Leistner,et al.  Fundamental regions for non-isometric group actions , 2021, 2112.11082.

[2]  Charles Frances,et al.  The Lorentzian Lichnerowicz Conjecture for real-analytic, three-dimensional manifolds , 2021, 2108.07215.

[3]  Karin Melnick,et al.  The conformal group of a compact simply connected Lorentzian manifold , 2019, Journal of the American Mathematical Society.

[4]  K. Melnick Rigidity of Transformation Groups in Differential Geometry , 2020, 2009.13937.

[5]  M. Olbrich,et al.  Compact quotients of Cahen-Wallach spaces , 2015, Memoirs of the American Mathematical Society.

[6]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[7]  V. Pecastaing Lorentzian manifolds with a conformal action of SL(2,R) , 2016, Commentarii Mathematici Helvetici.

[8]  T. Leistner,et al.  Completeness of compact Lorentzian manifolds with abelian holonomy , 2013, 1306.0120.

[9]  V. Pecastaing Essential conformal actions of PSL(2,R) on real-analytic compact Lorentz manifolds , 2015 .

[10]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[11]  C. Frances ABOUT PSEUDO-RIEMANNIAN LICHNEROWICZ CONJECTURE , 2012, 1211.0635.

[12]  Feng Ye Semi-Riemannian Geometry , 2011 .

[13]  W. Kühnel,et al.  Essential conformal fields in pseudo–Riemannian geometry , 2010 .

[14]  C. Frances,et al.  Conformal actions of nilpotent groups on pseudo-Riemannian manifolds , 2008, 0807.4735.

[15]  C. Frances Essential conformal structures in Riemannian and Lorentzian geometry , 2008 .

[16]  W. Kühnel,et al.  Conformal transformations of pseudo-Riemannian manifolds , 2008 .

[17]  Charles Frances Sur les variétés lorentziennes dont le groupe conforme est essentiel , 2005 .

[18]  J. Silvester Determinants of block matrices , 2000, The Mathematical Gazette.

[19]  Bruno Klingler Complétude des variétés Lorentziennes à courbure constante , 1996 .

[20]  J. Ferrand The action of conformal transformations on a Riemannian manifold , 1996 .

[21]  Y. Carrière Autour de la conjecture de L. Markus sur les variétés affines , 1989 .

[22]  M. Podoksenov A lorentzian manifold with a one-parameter group of homotheties which has a closed isotropic orbit , 1989 .

[23]  M. Cahen,et al.  Transformations conformes des espaces symétriques pseudo-riemanniens , 1982 .

[24]  R. Kulkarni Proper actions and pseudo—Riemannian space forms , 1981 .

[25]  M. Cahen,et al.  Conformational completion of Lorentz symmetric spaces , 1977 .

[26]  M. Obata The conjectures on conformal transformations of Riemannian manifolds , 1971 .

[27]  M. Cahen Lorentzian symmetric spaces , 1970 .

[28]  E. Calabi,et al.  Relativistic Space Forms , 1962 .

[29]  N. H. Kuiper On Conformally-Flat Spaces in the Large , 1949 .