Isolation and sequence-based characterization of a koala symbiont: Lonepinella koalarum

Koalas (Phascolarctos cinereus) are highly specialized herbivorous marsupials that feed almost exclusively on Eucalyptus leaves, which are known to contain varying concentrations of many different toxic chemical compounds. The literature suggests that Lonepinella koalarum, a bacterium in the Pasteurellaceae family, can break down some of these toxic chemical compounds. Furthermore, in a previous study, we identified L. koalarum as the most predictive taxon of koala survival during antibiotic treatment. Therefore, we believe that this bacterium may be important for koala health. Here, we isolated a strain of L. koalarum from a healthy koala female and sequenced its genome using a combination of short-read and long-read sequencing. We placed the genome assembly into a phylogenetic tree based on 120 genome markers using the Genome Taxonomy Database (GTDB), which currently does not include any L. koalarum assemblies. Our genome assembly fell in the middle of a group of Haemophilus, Pasteurella and Basfia species. According to average nucleotide identity and a 16S rRNA gene tree, the closest relative of our isolate is L. koalarum strain Y17189. Then, we annotated the gene sequences and compared them to 55 closely related, publicly available genomes. Several genes that are known to be involved in carbohydrate metabolism could exclusively be found in L. koalarum relative to the other taxa in the pangenome, including glycoside hydrolase families GH2, GH31, GH32, GH43 and GH77. Among the predicted genes of L. koalarum were 79 candidates putatively involved in the degradation of plant secondary metabolites. Additionally, several genes coding for amino acid variants were found that had been shown to confer antibiotic resistance in other bacterial species against pulvomycin, beta-lactam antibiotics and the antibiotic efflux pump KpnH. In summary, this genetic characterization allows us to build hypotheses to explore the potentially beneficial role that L. koalarum might play in the koala intestinal microbiome. Characterizing and understanding beneficial symbionts at the whole genome level is important for the development of anti- and probiotic treatments for koalas, a highly threatened species due to habitat loss, wildfires, and high prevalence of Chlamydia infections.

[1]  K. Nealson,et al.  A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index , 2020, mBio.

[2]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[3]  Geoffrey L. Winsor,et al.  CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database , 2019, Nucleic Acids Res..

[4]  Jack H. Pascoe,et al.  Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala , 2019, Animal microbiome.

[5]  B. Liu,et al.  Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing , 2019, bioRxiv.

[6]  B. Singh,et al.  The Koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population , 2019, PeerJ.

[7]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[8]  Ü. Niinemets,et al.  Ozone and Wounding Stresses Differently Alter the Temporal Variation in Formylated Phloroglucinols in Eucalyptus globulus Leaves , 2019, Metabolites.

[9]  J. Eisen,et al.  Metagenome-assembled genomes provide new insight into the microbial diversity of two thermal pools in Kamchatka, Russia , 2019, Scientific Reports.

[10]  R. Knight,et al.  Engineering the microbiome for animal health and conservation , 2019, Experimental biology and medicine.

[11]  P. Chapman,et al.  Identification of Lonepinella sp. in Koala Bite Wound Infections, Queensland, Australia , 2019, Emerging infectious diseases.

[12]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[13]  Graham J. Etherington,et al.  Adaptation and conservation insights from the koala genome , 2018, Nature Genetics.

[14]  A. Potter,et al.  Vaccination of koalas (Phascolarctos cinereus) against Chlamydia pecorum using synthetic peptides derived from the major outer membrane protein , 2018, PloS one.

[15]  J. Eisen,et al.  Characterization of shifts of koala (Phascolarctos cinereus) intestinal microbial communities associated with antibiotic treatment , 2018, PeerJ.

[16]  Cindy J. Castelle,et al.  Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life , 2018, Cell.

[17]  Tom O. Delmont,et al.  Linking pangenomes and metagenomes: the Prochlorococcus metapangenome , 2018, PeerJ.

[18]  Guillaume Jospin PhyloSift markers database , 2018 .

[19]  P. Hugenholtz,et al.  Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion , 2017, PeerJ.

[20]  V. Kitunen,et al.  Tannins and Their Complex Interaction with Different Organic Nitrogen Compounds and Enzymes: Old Paradigms versus Recent Advances , 2017, ChemistryOpen.

[21]  A. Potter,et al.  Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance , 2017, PloS one.

[22]  Peter K. Busk,et al.  Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function , 2017, BMC Bioinformatics.

[23]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[24]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[25]  T. Kasukawa,et al.  Genome Annotation , 2018, Genomes 4.

[26]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[27]  M. Dearing,et al.  The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins , 2016, Front. Microbiol..

[28]  M. Dearing,et al.  Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. , 2016, Environmental microbiology.

[29]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[30]  Scott Carver,et al.  A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus) , 2016, PloS one.

[31]  L. Pritchard,et al.  Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens , 2016 .

[32]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[33]  M. Maghsoodlou,et al.  Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis , 2015, Avicenna journal of phytomedicine.

[34]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[35]  David A. Coil,et al.  Swabs to genomes: a comprehensive workflow , 2015, PeerJ.

[36]  A. Roca,et al.  Variation in koala microbiomes within and between individuals: effect of body region and captivity status , 2015, Scientific Reports.

[37]  M. Bowers,et al.  Gut microbes may facilitate insect herbivory of chemically defended plants , 2015, Oecologia.

[38]  Radhey S. Gupta,et al.  Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus, and Pasteurella , 2015, International journal of genomics.

[39]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[40]  M. Khouja,et al.  Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves , 2015, Biological Research.

[41]  R. Weiss,et al.  Gut microbes of mammalian herbivores facilitate intake of plant toxins. , 2014, Ecology letters.

[42]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[43]  Brian Bushnell,et al.  BBMap: A Fast, Accurate, Splice-Aware Aligner , 2014 .

[44]  Holly M. Bik,et al.  PhyloSift: phylogenetic analysis of genomes and metagenomes , 2014, PeerJ.

[45]  Fangfang Xia,et al.  The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) , 2013, Nucleic Acids Res..

[46]  James R. Cole,et al.  Ribosomal Database Project: data and tools for high throughput rRNA analysis , 2013, Nucleic Acids Res..

[47]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[48]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[49]  P. Timms,et al.  Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. , 2013, Veterinary microbiology.

[50]  T. Looft,et al.  Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus , 2013, International journal of systematic and evolutionary microbiology.

[51]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[52]  Natalia Ivanova,et al.  Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites , 2013, PloS one.

[53]  Thomas L. Madden,et al.  The BLAST Sequence Analysis Tool , 2013 .

[54]  Peter Biely,et al.  Microbial carbohydrate esterases deacetylating plant polysaccharides. , 2012, Biotechnology advances.

[55]  Brian J Stucky,et al.  SeqTrace: a graphical tool for rapidly processing DNA sequencing chromatograms. , 2012, Journal of biomolecular techniques : JBT.

[56]  S. Rasmussen,et al.  Identification of acquired antimicrobial resistance genes , 2012, The Journal of antimicrobial chemotherapy.

[57]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[58]  Stijn van Dongen,et al.  Using MCL to extract clusters from networks. , 2012, Methods in molecular biology.

[59]  C. McAlpine,et al.  Ranking and mapping koala habitat quality for conservation planning on the basis of indirect evidence of tree-species use: a case study of Noosa Shire, south-eastern Queensland , 2011 .

[60]  M. Khouja,et al.  Eucalyptus oleosa Essential Oils: Chemical Composition and Antimicrobial and Antioxidant Activities of the Oils from Different Plant Parts (Stems, Leaves, Flowers and Fruits) , 2011, Molecules.

[61]  F. Bercovitch,et al.  Dietary specialization and Eucalyptus species preferences in Queensland koalas (Phascolarctos cinereus). , 2010, Zoo biology.

[62]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[63]  J.-F. Cheng,et al.  Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores , 2010, Proceedings of the National Academy of Sciences.

[64]  P. D’haeseleer,et al.  Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community , 2010, PloS one.

[65]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[66]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[67]  K. Nelson,et al.  Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases , 2009, Proceedings of the National Academy of Sciences.

[68]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[69]  E. Baker,et al.  Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease , 2009, Cellular and Molecular Life Sciences.

[70]  R. Gleadow,et al.  Frequency and distribution of cyanogenic glycosides in Eucalyptus L'Hérit. , 2008, Phytochemistry.

[71]  M. Rossi,et al.  Isolation and characterization of a new family 42 beta-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. , 2008, Biochimica et biophysica acta.

[72]  Christian von Mering,et al.  eggNOG: automated construction and annotation of orthologous groups of genes , 2007, Nucleic Acids Res..

[73]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[74]  P. Vandamme,et al.  DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. , 2007, International journal of systematic and evolutionary microbiology.

[75]  J. Brenchley,et al.  Bioinformatic, Genetic, and Biochemical Evidence that Some Glycoside Hydrolase Family 42 β-Galactosidases Are Arabinogalactan Type I Oligomer Hydrolases , 2006, Applied and Environmental Microbiology.

[76]  M. Kilian,et al.  Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description o , 2006, International journal of systematic and evolutionary microbiology.

[77]  Cristóbal N. Aguilar,et al.  Interaction of gut microflora with tannins in feeds , 2005, Naturwissenschaften.

[78]  W. Foley,et al.  Tree use by koalas in a chemically complex landscape , 2005, Nature.

[79]  A. Cowling,et al.  Eucalyptus foliar chemistry explains selective feeding by koalas , 2005, Biology Letters.

[80]  W. Foley,et al.  Digestion and absorption ofEucalyptus essential oils in greater glider (Petauroide svolans) and brushtail possum (Trichosurus vulpecula) , 1987, Journal of Chemical Ecology.

[81]  L. Blackall,et al.  Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov. , 2005, International journal of systematic and evolutionary microbiology.

[82]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[83]  John A. Tainer,et al.  Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.

[84]  D. McKey,et al.  African rainforest vegetation and rumen microbes: Phenolic compounds and nutrients as correlates of digestibility , 2004, Oecologia.

[85]  Y. Shachar-Hill,et al.  The Folate Precursor p-Aminobenzoate Is Reversibly Converted to Its Glucose Ester in the Plant Cytosol* , 2003, Journal of Biological Chemistry.

[86]  A. Cowling,et al.  Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula) , 2003, Journal of Comparative Physiology B.

[87]  J. E. Olsen,et al.  Genetic relationships among avian isolates classified as Pasteurella haemolytica, 'Actinobacillus salpingitidis' or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. , 2003, International journal of systematic and evolutionary microbiology.

[88]  A. Kosugi,et al.  Characterization of Two Noncellulosomal Subunits, ArfA and BgaA, from Clostridium cellulovorans That Cooperate with the Cellulosome in Plant Cell Wall Degradation , 2002, Journal of bacteriology.

[89]  M H Saier,et al.  The complete phosphotransferase system in Escherichia coli. , 2001, Journal of molecular microbiology and biotechnology.

[90]  I. Stupans,et al.  Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. , 2000, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[91]  William J. Foley,et al.  FOLIAR CONCENTRATION OF A SINGLE TOXIN CREATES HABITAT PATCHINESS FOR A MARSUPIAL FOLIVORE , 2000 .

[92]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[93]  J. Palmer,et al.  Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis 1 , 1999, The Journal of eukaryotic microbiology.

[94]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[95]  Elke Lang,et al.  Lonepinella koalarum gen. nov., sp. nov., a New Tannin-Protein Complex Degrading Bacterium , 1995 .

[96]  G. Seymour,et al.  Microbiological studies of the intestinal microflora of the Koala, Phascolarctos cinereus .1. Colonization of the cecal wall by tannin-protein-complex-degrading Enterobacteria , 1993 .

[97]  R. Osawa Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration , 1992, Applied and environmental microbiology.

[98]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[99]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[100]  R. Osawa,et al.  Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas , 1990, Applied and environmental microbiology.

[101]  W. Mannheim,et al.  Zur Systematik von Actinobacillus, Haemophilus und Pasteurella: Basenzusammensetzung der DNS, Atmungschinone und kulturellbiochemische Eigenschaften repräsentativer Sammlungsstämme , 1980 .

[102]  W. Mannheim,et al.  [On the taxonomy of Actinobacillus, Haemophilus, and Pasteurella: DNA base composition, respiratory quinones, and biochemical reactions of representative collection cultures (author's transl)]. , 1980, Zentralblatt fur Bakteriologie. 1. Abt. Originale. A: Medizinische Mikrobiologie, Infektionskrankheiten und Parasitologie.

[103]  D. Janzen,et al.  Strategies in Herbivory by Mammals: The Role of Plant Secondary Compounds , 1974, The American Naturalist.

[104]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.