A Multistep, Cluster-Based Multivariate Chart for Retrospective Monitoring of Individuals

The presence of several outliers in an individuals retrospective multivariate control chart distorts both the sample mean vector and covariance matrix, making the classical Hotelling's T2 approach unreliable for outlier detection. To overcome the distortion or masking, we propose a computer-intensive multistep cluster-based method. Compared with classical and robust estimation procedures, simulation studies show that our method is usually better and sometimes much better at detecting randomly occurring outliers as well as outliers arising from shifts in the process location. Additional comparisons based on real data are given.

[1]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[2]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[3]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[4]  Joe H. Sullivan,et al.  Detection of Multiple Change Points from Clustering Individual Observations , 2002 .

[5]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[6]  N. José Alberto Vargas,et al.  Robust Estimation in Multivariate Control Charts for Individual Observations , 2003 .

[7]  Surajit Ray,et al.  A Nonparametric Statistical Approach to Clustering via Mode Identification , 2007, J. Mach. Learn. Res..

[8]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[9]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[10]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[13]  Charles P. Quesenberry,et al.  THE MULTIVARIATE SHORT-RUN SNAPSHOT Q CHART , 2001 .

[14]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[15]  J. Booker,et al.  Discussion-•-— »-— — — — — , 1998 .

[16]  George C. Runger,et al.  Process Partitions from Time-Ordered Clusters , 2009 .

[17]  David M. Rocke,et al.  Some computational issues in cluster analysis with no a priori metric , 1999 .

[18]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[19]  William H. Woodall,et al.  A Comparison of Multivariate Control Charts for Individual Observations , 1996 .

[20]  John C. Young,et al.  Multivariate statistical process control with industrial applications , 2002, ASA-SIAM series on statistics and applied probability.

[21]  Daniel A. Coleman,et al.  Cluster Analysis for Large Datasets: An Effective Algorithm for Maximizing the Mixture Likelihood , 2000 .

[22]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[23]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[24]  William H. Woodall,et al.  High breakdown estimation methods for Phase I multivariate control charts , 2007, Qual. Reliab. Eng. Int..

[25]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[26]  Robert L. Mason Multivariate Quality Control: Theory and Applications , 1999, Technometrics.

[27]  S. J. Wierda Multivariate statistical process control—recent results and directions for future research , 1994 .

[28]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[29]  William H. Woodall,et al.  Phase I Analysis of Linear Profiles With Calibration Applications , 2004, Technometrics.

[30]  William H. Woodall,et al.  Distribution of Hotelling's T2 Statistic Based on the Successive Differences Estimator , 2006 .

[31]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[32]  Wolfgang Härdle,et al.  Multivariate and Semiparametric Kernel Regression , 1997 .