Computing a (1+ε)-Approximate Geometric Minimum-Diameter Spanning Tree
暂无分享,去创建一个
Sergey Bereg | Michael Segal | Jack Snoeyink | J. Mark Keil | Michael J. Spriggs | J. Keil | J. Snoeyink | M. Segal | S. Bereg | M. J. Spriggs
[1] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[2] Timothy M. Chan. Semi-online maintenance of geometric optima and measures , 2002, SODA '02.
[3] P. Camerini,et al. Complexity of spanning tree problems: Part I , 1980 .
[4] Refael Hassin,et al. On the Minimum Diameter Spanning Tree Problem , 1995, Inf. Process. Lett..
[5] Alexander Wolff,et al. Facility location and the geometric minimum-diameter spanning tree , 2002, Computational geometry.
[6] Jason Cong,et al. Performance optimization of VLSI interconnect layout , 1996, Integr..
[7] S. L. HAKIMIt. AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .
[8] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[9] O. Kariv,et al. An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .
[10] O. Kariv,et al. An Algorithmic Approach to Network Location Problems. I: The p-Centers , 1979 .
[11] Chak-Kuen Wong,et al. Minimum Diameter Spanning Trees and Related Problems , 1991, SIAM J. Comput..