Polynomial splines over locally refined box-partitions

We address progressive local refinement of splines defined on axes parallel box-partitions and corresponding box-meshes in any space dimension. The refinement is specified by a sequence of mesh-rectangles (axes parallel hyperrectangles) in the mesh defining the spline spaces. In the 2-variate case a mesh-rectangle is a knotline segment. When starting from a tensor-mesh this refinement process builds what we denote an LR-mesh, a special instance of a box-mesh. On the LR-mesh we obtain a collection of hierarchically scaled B-splines, denoted LR B-splines, that forms a nonnegative partition of unity and spans the complete piecewise polynomial space on the mesh when the mesh construction follows certain simple rules. The dimensionality of the spline space can be determined using some recent dimension formulas.

[1]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[2]  Sintef Ict,et al.  Isogeometric Representation and Analysis - Bridging the Gap between CAD and Analysis , 2009 .

[3]  Jean-Marie Mirebeau,et al.  Sharp asymptotics of the Lp approximation error for interpolation on block partitions , 2011, Numerische Mathematik.

[4]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[5]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[6]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[7]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[8]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[9]  Falai Chen,et al.  On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..

[10]  Larry L. Schumaker,et al.  Spline spaces on TR-meshes with hanging vertices , 2011, Numerische Mathematik.

[11]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[12]  Kjell Fredrik Pettersen On the dimension of multivariate spline spaces , 2013 .

[13]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[14]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[15]  R ForseyDavid,et al.  Hierarchical B-spline refinement , 1988 .

[16]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[17]  B. Mourrain On the dimension of spline spaces on planar T-subdivisions , 2010 .

[18]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .