Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach

This article presents an application of a fuzzy-constrained cellular automata model to simulate the spatio-temporal processes of urban growth in the rapidly growing Gold Coast City in Southeast Queensland, Australia. Urban growth has been captured in the model as a continuous process in space and over time, which has been affected by a set of primary and secondary transition rules. The primary transition rules deal with the propensity of a local area for development and the impact of its neighbouring cells on such development, while the secondary transition rules reflect the influences of environmental and institutional factors on urban growth. Application of the model demonstrates its re-applicability to different regions and the effectiveness of the cellular automata technique in studying urban dynamics. It also provides tools to explore sustainable urban growth options under different socio-environmental and planning control factors. A sustainable urban future of the region is achievable if development is managed to maintain a balance amongst ecological conservation, economic growth and the contemporary Australian lifestyle.

[1]  Varkki George Pallathucheril,et al.  The land-use evolution and impact assessment model: A comprehensive urban planning support system , 2009 .

[2]  Helen Couclelis,et al.  From Cellular Automata to Urban Models: New Principles for Model Development and Implementation , 1997 .

[3]  M. Batty,et al.  Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation , 2003, Comput. Environ. Urban Syst..

[4]  A. Yeh,et al.  Urban Simulation Using Principal Components Analysis and Cellular Automata for Land-Use Planning , 2002 .

[5]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[6]  Ved Prakash,et al.  Urbanization and national development , 1972 .

[7]  Xia Li,et al.  Modelling sustainable urban development by the integration of constrained cellular automata and GIS , 2000, Int. J. Geogr. Inf. Sci..

[8]  Suzana Dragicevic,et al.  A GIS-Based Irregular Cellular Automata Model of Land-Use Change , 2007 .

[9]  Alan T. Murray,et al.  Monitoring Growth in Rapidly Urbanizing Areas Using Remotely Sensed Data , 2000 .

[10]  Yichun Xie,et al.  A Generalized Model for Cellular Urban Dynamics , 2010 .

[11]  C. Chaline,et al.  Un traité de géographie urbaine : D.T. Herbert et C.J. Thomas, Cities in Space : City as Place , 1991 .

[12]  Ved Prakash,et al.  Urbanization and National Development. , 1973 .

[13]  Yan Liu,et al.  Modelling Urban Development with Geographical Information Systems and Cellular Automata , 2008 .

[14]  Richard L. Church,et al.  Spatial optimization as a generative technique for sustainable multiobjective land‐use allocation , 2008, Int. J. Geogr. Inf. Sci..

[15]  Birgit Müller,et al.  A standard protocol for describing individual-based and agent-based models , 2006 .

[16]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[17]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .

[18]  S. Al-kheder,et al.  Fuzzy inference guided cellular automata urban‐growth modelling using multi‐temporal satellite images , 2008, Int. J. Geogr. Inf. Sci..

[19]  J. Kenworthy The eco-city: ten key transport and planning dimensions for sustainable city development , 2006 .

[20]  J. Last Our common future. , 1987, Canadian journal of public health = Revue canadienne de sante publique.

[21]  Suzana Dragicevic,et al.  iCity: A GIS-CA modelling tool for urban planning and decision making , 2007, Environ. Model. Softw..

[22]  G. Huse Individual‐based Modeling and Ecology , 2008 .

[23]  M. Batty,et al.  Modeling urban dynamics through GIS-based cellular automata , 1999 .

[24]  Stuart R. Phinn,et al.  Modelling urban development with cellular automata incorporating fuzzy-set approaches , 2003, Comput. Environ. Urban Syst..

[25]  Peter W. Newton,et al.  Transitioning to Sustainable Urban Development , 2008 .

[26]  David T. Herbert,et al.  Cities in Space: Cities As Place , 1991 .

[27]  F. Wu,et al.  Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system , 1998 .

[28]  Stuart R. Phinn,et al.  Integrating spatial optimization and cellular automata for evaluating urban change , 2003 .

[29]  Emiliano Ferreira Castejon,et al.  Using neural networks and cellular automata for modelling intra‐urban land‐use dynamics , 2008, Int. J. Geogr. Inf. Sci..

[30]  F. Wu,et al.  Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation , 1998 .

[31]  Steve Curwell,et al.  The framework and protocols for environmental assessment , 2005 .

[32]  E. Andersson Urban Landscapes and Sustainable Cities , 2006 .

[33]  G. Brundtland,et al.  Our common future , 1987 .

[34]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[35]  Andrés Manuel García,et al.  Cellular automata models for the simulation of real-world urban processes: A review and analysis , 2010 .

[36]  Michael Batty,et al.  From Cells to Cities , 1994 .

[37]  Gene Bazan Our Ecological Footprint: Reducing Human Impact on the Earth , 1997 .

[38]  P. Newton Transitions: pathways towards sustainable urban development in Australia , 2008 .