Jacobi-Stirling polynomials and P-partitions

We investigate the diagonal generating function of the Jacobi-Stirling numbers of the second kind JS(n+k,n;z) by generalizing the analogous results for the Stirling and Legendre-Stirling numbers. More precisely, letting JS(n+k,n;z)=p"k","0(n)+p"k","1(n)z+...+p"k","k(n)z^k, we show that (1-t)^3^k^-^i^+^1@?"n">="0p"k","i(n)t^n is a polynomial in t with nonnegative integral coefficients and provide combinatorial interpretations of the coefficients by using Stanley's theory of P-partitions.

[1]  SeungKyung Park,et al.  P-Partitioins and q-Stirling Numbers , 1994, J. Comb. Theory, Ser. A.

[2]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[3]  Ira M. Gessel,et al.  Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.

[4]  Lance L. Littlejohn,et al.  Legendre polynomials, Legendre--Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression , 2002 .

[5]  Gangjoon Yoon,et al.  Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression , 2007 .

[6]  Eric S. Egge,et al.  Legendre-Stirling permutations , 2010, Eur. J. Comb..

[7]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[8]  Yoann Gelineau Etudes combinatoires des nombres de Jacobi-Stirling et d'Entringer , 2010 .

[9]  George E. Andrews,et al.  The Jacobi-Stirling numbers , 2011, J. Comb. Theory, Ser. A.

[10]  James Haglund,et al.  Stable multivariate Eulerian polynomials and generalized Stirling permutations , 2012, Eur. J. Comb..

[11]  R. Stanley Ordered Structures And Partitions , 1972 .

[12]  Jiang Zeng,et al.  Combinatorial Interpretations of the Jacobi-Stirling Numbers , 2009, Electron. J. Comb..

[13]  Svante Janson,et al.  Generalized Stirling permutations, families of increasing trees and urn models , 2008, J. Comb. Theory, Ser. A.

[14]  George E. Andrews,et al.  A combinatorial interpretation of the Legendre-Stirling numbers , 2009 .