Optimal Transport and Cournot-Nash Equilibria
暂无分享,去创建一个
[1] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[2] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[3] G. Carlier,et al. Equilibrium structure of a bidimensional asymmetric city , 2007 .
[4] P. Lions,et al. Jeux à champ moyen. I – Le cas stationnaire , 2006 .
[5] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[6] P. Lions,et al. Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .
[7] M. Breton,et al. Games of social interactions with local and global externalities , 2011 .
[8] R. Rosenthal. A class of games possessing pure-strategy Nash equilibria , 1973 .
[9] L. Shapley,et al. Potential Games , 1994 .
[10] R. Aumann. Markets with a continuum of traders , 1964 .
[11] Filippo Santambrogio,et al. Existence and Uniqueness of Equilibrium for a Spatial Model of Social Interactions , 2016 .
[12] C. Villani. Topics in Optimal Transportation , 2003 .
[13] P. Chiappori,et al. Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .
[14] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[15] Sergiu Hart,et al. On equilibrium allocations as distributions on the commodity space , 1974 .
[16] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[17] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[18] A. Mas-Colell. On a theorem of Schmeidler , 1984 .
[19] L. Shapley,et al. REGULAR ARTICLEPotential Games , 1996 .
[20] O. A. B. Space,et al. EQUILIBRIUM POINTS OF NONATOMIC GAMES , 2010 .
[21] S. Rachev,et al. Mass transportation problems , 1998 .
[22] I. Ekeland. Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types , 2010 .
[23] Robert J. Aumann,et al. EXISTENCE OF COMPETITIVE EQUILIBRIA IN MARKETS WITH A CONTINUUM OF TRADERS , 2020, Classics in Game Theory.
[24] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[25] Guillaume Carlier,et al. Duality and existence for a class of mass transportation problems and economic applications , 2003 .
[26] Alessio Figalli,et al. When is multidimensional screening a convex program? , 2009, J. Econ. Theory.
[27] Tim Roughgarden,et al. Selfish routing and the price of anarchy , 2005 .
[28] M. Ali Khan,et al. On Cournot-Nash equilibrium distributions for games with a nonmetrizable action space and upper semi-continuous payoffs , 1989 .
[29] Shlomo Weber,et al. Pure Strategy Nash Equilibrium in a Group Formation Game with Positive Externalities , 1997 .
[30] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .
[31] Mtw,et al. Mass Transportation Problems: Vol. I: Theory@@@Mass Transportation Problems: Vol. II: Applications , 1999 .
[32] P. Lions,et al. Mean field games , 2007 .