Optimal Transport and Cournot-Nash Equilibria

We study a class of games with a continuum of players for which Cournot-Nash equilibria can be obtained by the minimisation of some cost, related to optimal transport. This cost is not convex in the usual sense in general but it turns out to have hidden strict convexity properties in many relevant cases. This enables us to obtain new uniqueness results and a characterisation of equilibria in terms of some partial differential equations, a simple numerical scheme in dimension one as well as an analysis of the inefficiency of equilibria.

[1]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[2]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[3]  G. Carlier,et al.  Equilibrium structure of a bidimensional asymmetric city , 2007 .

[4]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[5]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[6]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[7]  M. Breton,et al.  Games of social interactions with local and global externalities , 2011 .

[8]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[9]  L. Shapley,et al.  Potential Games , 1994 .

[10]  R. Aumann Markets with a continuum of traders , 1964 .

[11]  Filippo Santambrogio,et al.  Existence and Uniqueness of Equilibrium for a Spatial Model of Social Interactions , 2016 .

[12]  C. Villani Topics in Optimal Transportation , 2003 .

[13]  P. Chiappori,et al.  Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .

[14]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[15]  Sergiu Hart,et al.  On equilibrium allocations as distributions on the commodity space , 1974 .

[16]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[17]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[18]  A. Mas-Colell On a theorem of Schmeidler , 1984 .

[19]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[20]  O. A. B. Space,et al.  EQUILIBRIUM POINTS OF NONATOMIC GAMES , 2010 .

[21]  S. Rachev,et al.  Mass transportation problems , 1998 .

[22]  I. Ekeland Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types , 2010 .

[23]  Robert J. Aumann,et al.  EXISTENCE OF COMPETITIVE EQUILIBRIA IN MARKETS WITH A CONTINUUM OF TRADERS , 2020, Classics in Game Theory.

[24]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[25]  Guillaume Carlier,et al.  Duality and existence for a class of mass transportation problems and economic applications , 2003 .

[26]  Alessio Figalli,et al.  When is multidimensional screening a convex program? , 2009, J. Econ. Theory.

[27]  Tim Roughgarden,et al.  Selfish routing and the price of anarchy , 2005 .

[28]  M. Ali Khan,et al.  On Cournot-Nash equilibrium distributions for games with a nonmetrizable action space and upper semi-continuous payoffs , 1989 .

[29]  Shlomo Weber,et al.  Pure Strategy Nash Equilibrium in a Group Formation Game with Positive Externalities , 1997 .

[30]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .

[31]  Mtw,et al.  Mass Transportation Problems: Vol. I: Theory@@@Mass Transportation Problems: Vol. II: Applications , 1999 .

[32]  P. Lions,et al.  Mean field games , 2007 .