Swept Volumes: Fundation, Perspectives, and Applications

A survey of swept volume concepts and methods is presented. It consolidates and relates seemingly different terminology and methods. The methods are divided into five major categories: method with envelope theory, method with sweep differential equation (SDE)/sweep envelope differential equation (SEDE), method with Jacobian rank deficiency, Voxel-based method, and free-form solids' sweeping methods. Commentary is provided on three fronts, concerning the advantages and pitfalls of individual methods, the different classes of methods, and the field of swept volumes as a whole. The characteristics of the most significant methods are summarized. The applicability of this seemingly simple formulation to the fields of solid modeling, robotics, manufacturing automation, and visualization is demonstrated through results reported by the authors, each in their own field.

[1]  Ralph R. Martin,et al.  Sweeping of three-dimensional objects , 1990, Comput. Aided Des..

[2]  Mark A. Ganter,et al.  On algebraic methods for implicit swept solids with finite extent , 1993 .

[3]  Karim Abdel-Malek,et al.  Verification of NC machining processes using swept volumes , 2006 .

[4]  Dinesh K. Pai,et al.  Genericity and singularities of robot manipulators , 1992, IEEE Trans. Robotics Autom..

[5]  R. Brooks Planning Collision- Free Motions for Pick-and-Place Operations , 1983 .

[6]  Josep Fontdecaba,et al.  Dimensional verification of NC machining profiles using extended quadtrees , 1996, Comput. Aided Des..

[7]  D. Kohli,et al.  Boundary Surfaces, Limit Surfaces, Crossable and Noncrossable Surfaces in Workspace of Mechanical Manipulators , 1988 .

[8]  Ming C. Leu,et al.  Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..

[9]  Yung-chen Lu Singularity Theory and an Introduction to Catastrophe Theory , 1980 .

[10]  Alexei Sourin,et al.  Function representation for sweeping by a moving solid , 1995, IEEE Trans. Vis. Comput. Graph..

[11]  W. Schroeder,et al.  Application of path planning and visualization for industrial-design and maintainability-analysis , 1998, Annual Reliability and Maintainability Symposium. 1998 Proceedings. International Symposium on Product Quality and Integrity.

[12]  Deok-Soo Kim,et al.  Tangent, normal, and visibility cones on Bézier surfaces , 1995, Comput. Aided Geom. Des..

[13]  Ming-Chuan Leu,et al.  Application of Flows and Envelopes to NC Machining , 1992 .

[14]  Chonglin Liu,et al.  Solid modeling of 4-axis wire EDM cut geometry , 1997, Comput. Aided Des..

[15]  Laxmi Parida,et al.  Computational methods for evaluating swept object boundaries , 1993, The Visual Computer.

[16]  Joel W. Burdick,et al.  A recursive method for finding revolute-jointed manipulator singularities , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[17]  Thomas W. Sederberg,et al.  Loop detection in surface patch intersections , 1988, Comput. Aided Geom. Des..

[18]  Ralph R. Martin,et al.  Swept Volumes in Solid Modellers , 1988, IMA Conference on the Mathematics of Surfaces.

[19]  Kenneth I. Joy,et al.  Boundary determination for trivariate solids , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[20]  Shu-jun Zhang,et al.  Workspaces of a walking machine and their graphical representation. Part I: kinematic workspaces , 1996, Robotica.

[21]  Karim Abdel-Malek,et al.  Singularities of manipulators with non-unilateral constraints , 2005, Robotica.

[22]  Karim Abdel-Malek,et al.  Workspace, Void, and Volume Determination of the General 5DOF Manipulator , 1999 .

[23]  Patrick G. Xavier,et al.  Fast swept-volume distance for robust collision detection , 1997, Proceedings of International Conference on Robotics and Automation.

[24]  Ferdinand Freudenstein,et al.  On the Analysis and Synthesis of the Workspace of a Three-Link, Turning-Pair Connected Robot Arm , 1984 .

[25]  Zeng-Jia Hu,et al.  Swept volumes generated by the natural quadric surfaces , 1996, Comput. Graph..

[26]  F. Litvin,et al.  Swept Volume Determination and Interference Detection for Moving 3-D Solids , 1991 .

[27]  Yoram Koren,et al.  Five-axis surface interpolators , 1995 .

[28]  Dieter Lasser,et al.  Bernstein-Bézier representation of volumes , 1985, Comput. Aided Geom. Des..

[29]  Karim Abdel-Malek,et al.  METHOD AND CODE FOR THE VISUALIZATION OF MULTIVARIATE SOLIDS , 2000 .

[30]  Bert Jüttler,et al.  Rational motion-based surface generation , 1999, Comput. Aided Des..

[31]  Ming C. Leu,et al.  Swept volume: a retrospective and prospective view , 1997, Neural Parallel Sci. Comput..

[32]  Robert E. Barnhill,et al.  A marching method for parametric surface/surface intersection , 1990, Comput. Aided Geom. Des..

[33]  Yuan-Shin Lee,et al.  A shape-generating approach for multi-axis machining G-buffer models , 1999, Comput. Aided Des..

[34]  Robert B. Jerard,et al.  Discrete simulation of NC machining , 1987, SCG '87.

[35]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[36]  J. Oliver Efficient Intersection of Surface Normals With Milling Tool Swept Volumes for Discrete Three-Axis NC Verification , 1992 .

[37]  Jia-Guang Sun,et al.  The sweep-envelope differential equation algorithm for general deformed swept volumes , 2000, Comput. Aided Geom. Des..

[38]  Ying-Chien Tsai,et al.  Accessible Region and Synthesis of Robot Arms , 1981 .

[39]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[40]  Sanjeev Bedi,et al.  Surface swept by a toroidal cutter during 5-axis machining , 2001, Comput. Aided Des..

[41]  K. C. Gupta,et al.  On the Nature of Robot Workspace , 1986 .

[42]  Marco Ceccarelli,et al.  A Synthesis Algorithm for Three-Revolute Manipulators by Using an Algebraic Formulation of Workspace Boundary , 1995 .

[43]  國井 利泰,et al.  Visual computing : integrating computer graphics with computer vision , 1992 .

[44]  Sanjeev Bedi,et al.  Swept volumes of toroidal cutters using generating curves , 1998 .

[45]  Ming-Chuan Leu,et al.  Simulation of NC Machining with Cutter Deflection by Modelling Deformed Swept Volumes , 1998 .

[46]  Vadim Shapiro,et al.  Maintenance of Geometric Representations through Space Decompositions , 1997, Int. J. Comput. Geom. Appl..

[47]  Karim Abdel-Malek,et al.  On the determination of starting points for parametric surface intersections , 1997, Comput. Aided Des..

[48]  J. K. Wu,et al.  Dextrous Workspaces of Manipulators, Part 2: Computational Methods∗ , 1993 .

[49]  P. Papalambros,et al.  Cones on bezier curves and surfaces , 1990 .

[50]  Erik D. Goodman,et al.  Direct dimensional NC verification , 1990, Comput. Aided Des..

[51]  Karim Abdel-Malek,et al.  On swept volume formulations: implicit surfaces , 2001, Comput. Aided Des..

[52]  Ming C. Leu,et al.  The sweep-envelope differential equation algorithm and its application to NC machining verification , 1997, Comput. Aided Des..

[53]  Yukinori Kakazu,et al.  Theoretical Discussion on Swept-Volumes of Moving Solid Objects. , 1995 .

[54]  Ming C. Leu,et al.  Singularity Theory Approach to swept Volumes , 2000, Int. J. Shape Model..

[55]  Myung-Soo Kim,et al.  Rotational sweep volumes of objects bounded by algebraic curves , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[56]  K. K. Wang,et al.  Real-time verification of multiaxis NC programs with raster graphics , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[57]  G. R. Pennock,et al.  The Workspace of a General Geometry Planar Three-Degree-of-Freedom Platform-Type Manipulator , 1993 .

[58]  Byoung Kyu Choi,et al.  Modeling the surface swept by a generalized cutter for NC verification , 1998, Comput. Aided Des..

[59]  Karim Abdel-Malek,et al.  Determining intersection curves between surfaces of two solids , 1996, Comput. Aided Des..

[60]  Ming C. Leu,et al.  Generating swept solids for NC verification using the SEDE method , 1997, SMA '97.

[61]  K. C. Gupta,et al.  Design Considerations for Manipulator Workspace , 1982 .

[62]  Wei Li Real-time motion planning for robot application in flexible manufacturing systems , 1995, Other Conferences.

[63]  Chandrajit L. Bajaj,et al.  Tracing surface intersections , 1988, Comput. Aided Geom. Des..

[64]  Christine Chevallereau Feasible trajectories for a non-redundant robot at a singularity , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[65]  Warren A. Hunt,et al.  The Role of Solid Modelling in Machining-Process Modelling and NC Verification , 1981 .

[66]  D. M. Emiris Workspace analysis of realistic elbow and dual-elbow robot , 1993 .

[67]  Peter K. Allen,et al.  Swept volumes and their use in viewpoint computation in robot work-cells , 1995, Proceedings. IEEE International Symposium on Assembly and Task Planning.

[68]  Karim Abdel-Malek,et al.  NC Verification of Up to 5 Axis Machining Processes Using Manifold Stratification , 2001 .

[69]  Soon-Bum Lim,et al.  Approximate General Sweep Boundary of a 2D Curved Object, , 1993, CVGIP Graph. Model. Image Process..

[70]  F. A. Adkins,et al.  Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces , 1996 .

[71]  Karim Abdel-Malek,et al.  Swept volumes: void and boundary identification , 1998, Comput. Aided Des..

[72]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[73]  Joseph K. Davidson,et al.  Robot Workspace of a Tool Plane: Part 1—A Ruled Surface and Other Geometry , 1987 .

[74]  George Sealy Representing and rendering sweep objects using volume models , 1997, Proceedings Computer Graphics International.

[75]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[76]  Karim Abdel-Malek,et al.  Approximate swept volumes of NURBS surfaces or solids , 2005, Comput. Aided Geom. Des..

[77]  Joel W. Burdick,et al.  A classification of 3R regional manipulator singularities and geometries , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[78]  Peter K. Allen,et al.  Computing swept volumes , 2000, Comput. Animat. Virtual Worlds.

[79]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[80]  Kenneth I. Joy,et al.  Generating the Envelope of a Swept Trivariate Solid , 1999 .

[81]  Jörg Peters,et al.  Computing Volumes of Solids Enclosed by Recursive Subdivision Surfaces , 1997, Comput. Graph. Forum.

[82]  李伟 Robot Motion Planning in Flexible Manufacturing Systems , 1996 .

[83]  T. N. Wong,et al.  Feature-based design by volumetric machining features , 1998 .

[84]  K. Sugimoto,et al.  Determination of Extreme Distances of a Robot Hand. Part 2: Robot Arms With Special Geometry , 1981 .

[85]  Jae-Woo Ahn,et al.  An Algebraic Algorithm to Compute the Exact General Sweep Boundary of a 2D Curved Object , 1993, Inf. Process. Lett..

[86]  Karim Abdel-Malek,et al.  Analytical Boundary of the Workspace for General3-DOF Mechanisms , 1997, Int. J. Robotics Res..

[87]  Klaus Weinert,et al.  Swept volume generation for the simulation of machining processes , 2004 .

[88]  Takashi Maekawa,et al.  An overview of offset curves and surfaces , 1999, Comput. Aided Des..

[89]  Karim Abdel-Malek,et al.  Multiple sweeping using the Denavit-Hartenberg representation method , 1999, Comput. Aided Des..

[90]  Kenneth I. Joy,et al.  Utilizing parametric hyperpatch methods for modeling and display of free-form solids , 1991, SMA '91.

[91]  Mohan S. Kankanhalli,et al.  Adaptive marching cubes , 1995, The Visual Computer.

[92]  F. A. Adkins,et al.  Working Capability Analysis of Stewart Platforms , 1996 .

[93]  Min Chen,et al.  Image‐Swept Volumes , 2002, Comput. Graph. Forum.

[94]  Sanjay B. Joshi,et al.  Recognition of interacting rotational and prismatic machining features from 3-D mill-turn parts , 1998 .

[95]  Ming-Chuan Leu,et al.  Implementation of SDE method to represent cutter swept volumes in 5-axis NC milling , 1995, Other Conferences.

[96]  Ming C. Leu,et al.  A Verification Program for 5-Axis NC Machining with General APT Tools , 1997 .

[97]  Bruno Buchberger,et al.  A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.

[98]  Karim Abdel-Malek,et al.  Geometric representation of the swept volume using Jacobian rank-deficiency conditions , 1997, Comput. Aided Des..

[99]  Ming-Chuan Leu,et al.  Classification and Analysis of Robot Swept Volumes , 1992 .

[100]  William E. Lorensen,et al.  Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.

[101]  Karim Abdel-Malek,et al.  Reach Envelope of a 9-Degree-of Freedom Model of the Upper Extremity , 2005, Int. J. Robotics Autom..

[102]  Martin Herman,et al.  Fast, three-dimensional, collision-free motion planning , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[103]  Malcolm S. Casale,et al.  An Overview of Analytic Solid Modeling , 1985, IEEE Computer Graphics and Applications.

[104]  Karim Abdel-Malek,et al.  CLOSED-FORM SWEPT VOLUME OF IMPLICIT SURFACES , 2000 .

[105]  D. Sattinger,et al.  Calculus on Manifolds , 1986 .

[106]  Dinesh Manocha,et al.  Fast swept volume approximation of complex polyhedral models , 2003, SM '03.

[107]  James F. Cremer,et al.  An Approach to Sweeping NURBS , 2001, DAC 2001.

[108]  Edward J. Haug,et al.  On the determination of boundaries to manipulator workspaces , 1997 .

[109]  Edward J. Haug,et al.  Dextrous Workspaces of Manipulators. I. Analytical Criteria , 1992 .

[110]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[111]  Karim Abdel-Malek,et al.  Path trajectory verification for robot manipulators in a manufacturing environment , 1997 .

[112]  Koichi Harada,et al.  Multiple sweeping using quaternion operations , 2002, Comput. Aided Des..

[113]  W. Rymer,et al.  Guidance-based quantification of arm impairment following brain injury: a pilot study. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[114]  Gershon Elber Global error bounds and amelioration of sweep surfaces , 1997, Comput. Aided Des..

[115]  Daniel B. Olfe Computer Graphics for Design: From Algorithms to Autocad , 1995 .

[116]  Marco Ceccarelli,et al.  On the Workspace of General 4R Manipulators , 1995, Int. J. Robotics Res..

[117]  Kenneth J. Waldron,et al.  The Workspaces of a Mechanical Manipulator , 1981 .

[118]  M. Sabin Envelope curves and surfaces , 1987 .

[119]  Xiao Tianyuan,et al.  A simulation software GNCV of NC verification , 1997, 1997 IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335).

[120]  Gershon Elber,et al.  Offsets, sweeps, and Minkowski sums , 1999, Comput. Aided Des..

[121]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[122]  Ming C. Leu,et al.  Trimming swept volumes , 1999, Comput. Aided Des..

[123]  Christine Chevallereau,et al.  A new method for robot control in singular configurations with motion in any Cartesian direction , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[124]  E. E. Hartquista,et al.  A computing strategy for applications involving offsets , sweeps , and Minkowski operations , 1998 .

[125]  Michael I. Jordan,et al.  Surface/surface intersection , 1987, Comput. Aided Geom. Des..

[126]  Toshio Sata,et al.  A Cutting Simulation System for Machinability Evaluation Using a Workpiece Model , 1989 .

[127]  Thomas R. Chase,et al.  Generating the swept area of a body undergoing planar motion , 1991, DAC 1991.

[128]  Ian T. Chappel The use of vectors to simulate material removed by numerically controlled milling , 1983 .

[129]  André Crosnier,et al.  Swept volumes generated from deformable objects application to NC verification , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[130]  K Abdel-Malek DETC 99 / DAC-8560 AN EXACT METHOD FOR NC VERIFICATION OF UP TO 5-AXIS MACHINING , 1999 .

[131]  James J. Troy,et al.  Human Swept Volumes , 2004 .

[132]  Ming C. Leu,et al.  Analysis and modelling of deformed swept volumes , 1994, Comput. Aided Des..

[133]  S. Agrawal Workspace boundaries of in-parallel manipulator systems , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[134]  Jingzhou Yang,et al.  Towards understanding the workspace of human limbs , 2004, Ergonomics.

[135]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[136]  Ming C. Leu,et al.  Deformed Swept Volume Analysis to NC Machining Simulation with Cutter Deflection , 1998, SSM.

[137]  Vadim Shapiro Errata: Maintenance of Geometric Representations Through Space Decompositions , 1997, Int. J. Comput. Geom. Appl..

[138]  Jingzhou Yang,et al.  On the determination of driver reach and barriers , 2005 .

[139]  Mohamed A. Elbestawi,et al.  Milling process simulation : A generic solid modeller based paradigm , 1998 .

[140]  M. Leu,et al.  Analysis of Swept Volume via Lie Groups and Differential Equations , 1992 .

[141]  Bernard Leighton Wellman,et al.  Technical Descriptive Geometry , 1957 .

[142]  Konstantinos A. Tarabanis,et al.  Dynamic sensor planning , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[143]  J. Ed Akin Computer-assisted mechanical design , 1990 .

[144]  J. Flaquer,et al.  Envelopes of moving quadric surfaces , 1992, Comput. Aided Geom. Des..

[145]  Mark A. Ganter,et al.  Dynamic Collision Detection Using Swept Solids , 1986 .

[146]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[147]  Clément Gosselin,et al.  Singularity analysis of closed-loop kinematic chains , 1990, IEEE Trans. Robotics Autom..

[148]  Q.J. Ge,et al.  Kinematics-driven geometric modeling: a framework for simultaneous NC tool-path generation and sculptured surface design , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[149]  S. H. Park,et al.  Geometric Representation of Translational Swept Volumes and its Applications , 1986 .

[150]  Shu-jun Zhang,et al.  Workspaces of a walking machine and their graphical representation. Part I: kinematic workspaces , 1996, Robotica.

[151]  Jiing-Yih Lai,et al.  Sweep-surface reconstruction from three-dimensional measured data , 1998, Comput. Aided Des..

[152]  Fopke Klok Two moving coordinate frames for sweeping along a 3D trajectory , 1986, Comput. Aided Geom. Des..