ANN modelling of fractal dimension in machining

Abstract: This chapter deals with fractal dimension modelling in machining operations. The study considers the fractal dimension to describe surface roughness. Four different machining operations, including CNC end milling, CNC turning, cylindrical grinding and EDM are carried out on mild steel (AISI 1040) work-pieces. The surface roughness data are used to develop models for predicting fractal dimension using artificial neural network (ANN). From the results of all machining operations, it is seen that developed models can predict fractal dimension very accurately.

[1]  James C. Wyant,et al.  A new three-dimensional non-contact digital optical profiler , 1988 .

[2]  H. Truckenbrodt,et al.  A simple fractal analysis method of the surface roughness , 2004 .

[3]  S. K. Biswas,et al.  Genesis of workpiece roughness generated in surface grinding and polishing of metals , 1999 .

[4]  Shan Ping,et al.  Fractal characterization and simulation of surface profiles of copper electrodes and aluminum sheets , 2005 .

[5]  Ge Shirong,et al.  Fractal prediction models of sliding wear during the running-in process , 1999 .

[6]  Zhuangde Jiang,et al.  Research into the application of fractal geometry in characterising machined surfaces , 2001 .

[7]  Maxence Bigerelle,et al.  Multiscale functional analysis of wear: A fractal model of the grinding process , 2005 .

[8]  Yi Zhang,et al.  Research on the fractal of surface topography of grinding , 2001 .

[9]  B. Bhushan,et al.  Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces , 1990 .

[10]  David J. Whitehouse,et al.  The parameter rash — is there a cure? , 1982 .

[11]  George-Christopher Vosniakos,et al.  Predicting surface roughness in machining: a review , 2003 .

[12]  A. Majumdar,et al.  Fractal characterization and simulation of rough surfaces , 1990 .

[13]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  I. Puertas,et al.  Spacing roughness parameters study on the EDM of silicon carbide , 2005 .

[15]  C. A. Brown,et al.  Describing ground surface texture using contact profilometry and fractal analysis , 1991 .

[16]  F. F. Ling Fractals, engineering surfaces and tribology , 1990 .

[17]  Prasanta Sahoo,et al.  Finite element contact analysis of fractal surfaces , 2007 .

[18]  Kwang Ho Kim,et al.  Fractal dimension analysis of machined surface depending on coated tool wear , 2005 .

[19]  T. R. Thomas,et al.  Defining the microtopography of surfaces in thermal contact , 1982 .

[20]  Martin T. Hagan,et al.  Gauss-Newton approximation to Bayesian learning , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[21]  Shirong Ge,et al.  Experimental study on the characterization of worn surface topography with characteristic roughness parameter , 2003 .

[22]  Prasanta Sahoo,et al.  Fractal dimension modelling of surface profile and optimisation in CNC end milling using Response Surface Method , 2008, Int. J. Manuf. Res..

[23]  L. He,et al.  The fractal character of processed metal surfaces , 1997 .

[24]  R. Sayles,et al.  Surface topography as a nonstationary random process , 1978, Nature.

[25]  Claude Tricot,et al.  Fractal analysis of worn surfaces , 1994 .

[26]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[27]  P. Nayak,et al.  Random Process Model of Rough Surfaces , 1971 .

[28]  K. Komvopoulos,et al.  Contact analysis of elastic-plastic fractal surfaces , 1998 .

[29]  M. S. Bobji,et al.  Some features of surface topographical power spectra generated by conventional machining of a ductile metal , 1998 .

[30]  Koichi Okuda,et al.  Calculation of the fractal dimensions of machined surface profiles , 1996 .