Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands

Integrated single-crystal-like small and wide-angle X-ray diffraction images of a CdSe nanosheet under pressure provide direct experimental evidence for the detailed pathway of transformation of the CdSe from a wurtzite to a rock-salt structure. Two consecutive planar atomic slips [(001) 〈110〉 in parallel and (102) with a distortion angle of ∼40°] convert the wurtzite-based nanosheet into a saw-like rock-salt nanolayer. The transformation pressure is three times that in the bulk CdSe crystal. Theoretical calculations are in accord with the mechanism and the change in transformation pressure, and point to the critical role of the coordinated amines. Soft ligands not only increase the stability of the wurtzite structure, but also improve its elastic strength and fracture toughness. A ligand extension of 2.3 nm appears to be the critical dimension for a turning point in stress distribution, leading to the formation of wurtzite (001)/zinc-blende (111) stacking faults before rock-salt nucleation.

[1]  A. Alivisatos,et al.  Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals , 2002 .

[2]  S. Leoni,et al.  Mechanism of the pressure-induced wurtzite to rocksalt transition of CdSe , 2005 .

[3]  Zhongwu Wang,et al.  Size-Dependent Structural Stability and Tuning Mechanism: A Case of Zinc Sulfide , 2009 .

[4]  L. Daemen,et al.  Enhancement of fracture toughness in nanostructured diamond-SiC composites , 2004 .

[5]  R. Martoňák,et al.  Pressure-induced structural phase transitions in CdSe: a metadynamics study. , 2009, The Journal of chemical physics.

[6]  A. Onodera,et al.  Fixed points for pressure calibration above 100 kbars related to semiconductor‐metal transitions , 1980 .

[7]  Paul Roschger,et al.  From brittle to ductile fracture of bone , 2006, Nature materials.

[8]  S. Yu,et al.  High pressure phase transitions in tetrahedrally coordinated semiconducting compounds , 1978 .

[9]  Lin-wang Wang,et al.  Mechanical and electrical properties of CdTe tetrapods studied by atomic force microscopy. , 2007, The Journal of chemical physics.

[10]  Jeffrey Wadsworth,et al.  Hall-petch relation in nanocrystalline solids , 1991 .

[11]  L. Beaulieu,et al.  Pressure-induced structural changes in ZnS , 2000 .

[12]  Robert T. Downs,et al.  Morphology-tuned wurtzite-type ZnS nanobelts , 2005, Nature materials.

[13]  Paul F. McMillan,et al.  New materials from high-pressure experiments , 2002, Nature materials.

[14]  Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals. , 2006, Physical review letters.

[15]  A. Campbell,et al.  Equations of state and optical properties of the high pressure phase of zinc sulfide , 1991 .

[16]  Jung Ho Yu,et al.  Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. , 2006, Journal of the American Chemical Society.

[17]  Michael O'Keeffe,et al.  The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation , 2003 .

[18]  Alivisatos,et al.  Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals , 2000, Physical review letters.

[19]  Christensen,et al.  Cubic ZnS under pressure: Optical-absorption edge, phase transition, and calculated equation of state. , 1990, Physical review. B, Condensed matter.

[20]  S. Tolbert,et al.  The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure , 1995 .

[21]  Chen,et al.  Size Dependence of Structural Metastability in Semiconductor Nanocrystals , 1997, Science.

[22]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[24]  Roald Hoffmann,et al.  The chemical imagination at work in very tight places. , 2007, Angewandte Chemie.

[25]  H. Sowa The high-pressure behaviour of CdSe up to 3 GPa and the orientation relations between its wurtzite- and NaCl-type modifications , 2005 .

[26]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[27]  Ab initio pseudopotential study of the structural phase transformations of ZnS under high pressure. , 1996, Physical review. B, Condensed matter.

[28]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[29]  A M Minor,et al.  Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. , 2008, Nature materials.

[30]  R. Lerner,et al.  Activation Volumes for Solid-Solid Transformations in Nanocrystals , 2001, Science.

[31]  T. Kondo,et al.  Phase transition and EOS of zinc sulfide (ZnS) under shock and static compressions up to 135 GPa , 1999 .

[32]  Pandey,et al.  Ab initio high-pressure structural and electronic properties of ZnS. , 1993, Physical review. B, Condensed matter.

[33]  Zhong Lin Wang,et al.  Structure stability, fracture, and tuning mechanism of CdSe nanobelts , 2007 .

[34]  X. Liao,et al.  X‐Ray Induced Synthesis of 8H Diamond , 2008 .

[35]  A. P. Alivisatos,et al.  First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. , 2005, Journal of Physical Chemistry B.

[36]  A. Alivisatos,et al.  Critical size for fracture during solid-solid phase transformations , 2004 .

[37]  F. Bundy,et al.  Direct Conversion of Graphite to Diamond in Static Pressure Apparatus. , 1962, Science.

[38]  H. Wenk,et al.  Texture and Anisotropy , 2004 .