Chapter 5 Conceptual Graphs

A conceptual graph (CG) is a graph representation for logic based on the semantic networks of artificial intelligence and the existential graphs of Charles Sanders Peirce. Several versions of CGs have been designed and implemented over the past thirty years. The simplest are the typeless core CGs, which correspond to Peirce's original existential graphs. More common are the extended CGs, which are a typed superset of the core. The research CGs have explored novel techniques for reasoning, knowledge representation, and natural language semantics. The semantics of the core and extended CGs is defined by a formal mapping to and from the ISO standard for Common Logic, but the research CGs are defined by a variety of formal and informal extensions. This article surveys the notation, applications, and reasoning methods used with CGs and their mapping to and from other versions of logic.

[1]  H. Kamp A Theory of Truth and Semantic Representation , 2008 .

[2]  C. Peirce On the Algebra of Logic: A Contribution to the Philosophy of Notation , 1885 .

[3]  John F. Sowa,et al.  Conceptual Graphs for a Data Base Interface , 1976, IBM J. Res. Dev..

[4]  Jeroen Groenendijk,et al.  Formal methods in the study of language , 1983 .

[5]  Gerard Ellis,et al.  Multilevel hierarchical retrieval , 1992, Knowl. Based Syst..

[7]  J. Davenport Editor , 1960 .

[8]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[9]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[10]  Margaret Masterman Semantic message detection for machine translation, using an interlingua , 1961, EARLYMT.

[11]  Michael Kifer,et al.  HILOG: A Foundation for Higher-Order Logic Programming , 1993, J. Log. Program..

[12]  D. G. Hays Dependency Theory: A Formalism and Some Observations , 1964 .

[13]  J. M. Mancini,et al.  Worlds , 2009, American Art.

[14]  Gerd Stumme,et al.  Conceptual Structures: Common Semantics for Sharing Knowledge. Proc. , 2005 .

[15]  John F. Sowa,et al.  Worlds, Models and Descriptions , 2006, Stud Logica.

[16]  Laurence B. Heilprin Linguistic Analysis and Programming for Mechanical Translation (Mechanical Translation and Thought), Silvio Ceccato (Ed.). Feltrinelli Editore, Waltham, Mass. (1961) , 1963 .

[17]  Lucien Tesnière Éléments de syntaxe structurale , 1959 .

[18]  D. Davidson Essays on actions and events , 1980 .

[19]  Patrick J. Hayes,et al.  A Semantics for the Knowledge Interchange Format , 2001 .

[20]  A. R. Turquette,et al.  Logic, Semantics, Metamathematics , 1957 .

[21]  Frithjof Dau,et al.  Some Notes on Proofs with Alpha Graphs , 2006, ICCS.

[22]  H. Putnam,et al.  Reasoning and the Logic of Things. The Cambridge Conferences Lectures of 1898. , 1993 .

[23]  Hilary Putnam,et al.  Reasoning and the logic of things , 1992 .

[24]  Nicholas V. Findler,et al.  Associative Networks- Representation and Use of Knowledge by Computers , 1980, CL.

[25]  David L. Davidson,et al.  The Logical Form of Action Sentences , 2001 .

[26]  Tomek Strzalkowski,et al.  From Discourse to Logic , 1991 .

[27]  Drew McDermott,et al.  Artificial intelligence meets natural stupidity , 1976, SGAR.

[28]  William A. Woods,et al.  What's in a Link: Foundations for Semantic Networks , 1975 .

[29]  M. R. Genesereth,et al.  Knowledge Interchange Format Version 3.0 Reference Manual , 1992, LICS 1992.

[30]  Willard Van Orman Quine,et al.  Selected Logic Papers , 1966 .

[31]  Peter W. Eklund,et al.  Conceptual structures: current research and practice , 1992 .

[32]  J. Sowa Laws, Facts, and Contexts: Foundations for Multimodal Reasoning , 2003 .

[33]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[34]  J. Heijenoort From Frege To Gödel , 1967 .

[35]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[36]  W. V. Quine,et al.  Reduction to a dyadic predicate , 1954, Journal of Symbolic Logic.