Guided Walking to Direct Pedestrians toward the Same Destination

In this paper, we propose a floor covering-type walking guidance sheet to direct pedestrians without requiring attachment/detachment. Polarity is reversed with respect to the direction of walking in the guidance sheet such that a pedestrian travelling in any direction can be guided toward a given point. In experiments, our system successfully guided a pedestrian along the same direction regardless of the direction of travel using the walking guidance sheet. The induction effect of the proposed method was also evaluated.

[1]  Ikuko Shibata,et al.  Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity , 2005, Vision Research.

[2]  Tomohiro Amemiya,et al.  Lead-me interface for a pulling sensation from hand-held devices , 2008, TAP.

[3]  Willem Bles,et al.  Angular velocity, not temporal frequency determines circular vection , 1990, Vision Research.

[4]  Masatoshi Arikawa,et al.  Navitime: Supporting Pedestrian Navigation in the Real World , 2007, IEEE Pervasive Computing.

[5]  Susumu Tachi,et al.  TWISTER III: A Panoramic Autostereo Display for Motion Pictures , 2004 .

[6]  B Gillam,et al.  Stimulus Eccentricity and Spatial Frequency Interact to Determine Circular Vection , 1998, Perception.

[7]  J. Lishman,et al.  The Autonomy of Visual Kinaesthesis , 1973, Perception.

[8]  C Bonnet,et al.  Spatiotemporal boundaries of linear vection , 1995, Perception & psychophysics.

[9]  Martin Frey,et al.  CabBoots: shoes with integrated guidance system , 2007, TEI.

[10]  Hiroyuki Kajimoto,et al.  "Vection field" for pedestrian traffic control , 2011, AH '11.

[11]  Makoto Sato,et al.  Analysis of Vection using Body Sway in Immersive Virtual Environment , 2003 .

[12]  G. Johansson Studies on Visual Perception of Locomotion , 1977, Perception.

[13]  Susumu Tachi,et al.  Three-Dimensional Image Information Media. Immersive Autostereoscopic Display, TWISTER I(Telexistence Wide-angle Immersive STEReoscope Model I). , 2001 .

[14]  Hiroyuki Kajimoto,et al.  Pull-navi: a novel tactile navigation interface by pulling the ears , 2009, SIGGRAPH '09.

[15]  Michael Rohs,et al.  Cruise Control for Pedestrians: Controlling Walking Direction using Electrical Muscle Stimulation , 2015, CHI.

[16]  Koji Tsukada,et al.  ActiveBelt: Belt-Type Wearable Tactile Display for Directional Navigation , 2004, UbiComp.

[17]  Jinglong Wu,et al.  Dependence of Luminance on the Perception of Linear Vection under Different Spatial Frequency Conditions , 2013 .

[18]  J. Dichgans,et al.  Differential effects of central versus peripheral vision on egocentric and exocentric motion perception , 1973, Experimental Brain Research.

[19]  M. Sile O'Modhrain,et al.  GpsTunes: controlling navigation via audio feedback , 2005, Mobile HCI.

[20]  William R. Provancher,et al.  Communication of direction through lateral skin stretch at the fingertip , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[21]  Hideyuki Ando,et al.  Virtual acceleration with galvanic vestibular stimulation in a virtual reality environment , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[22]  T. Parks POST-RETINAL VISUAL STORAGE. , 1965, The American journal of psychology.

[23]  Tomohiro Amemiya,et al.  Shaking the world: galvanic vestibular stimulation as a novel sensation interface , 2005, SIGGRAPH '05.

[24]  Takuji Narumi,et al.  Unlimited corridor: redirected walking techniques using visuo haptic interaction , 2016, SIGGRAPH Emerging Technologies.