Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions

We show that the classical Cauchy problem for the incompressible 3d Navier-Stokes equations with (−1)-homogeneous initial data has a global scale-invariant solution which is smooth for positive times. Our main technical tools are local-in-space regularity estimates near the initial time, which are of independent interest.

[1]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[2]  M. Cannone,et al.  Self-similar solutions for navier-stokes equations in , 1996 .

[3]  Dapeng Du,et al.  On the Local Smoothness of Solutions of the Navier–Stokes Equations , 2005 .

[4]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[5]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[6]  Y. Giga,et al.  Navier‐Stokes flow in R3 with measures as initial vorticity and Morrey spaces , 1988 .

[7]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[8]  G. Seregin A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations , 2012 .

[9]  Pierre Germain,et al.  Regularity of Solutions to the Navier-Stokes Equations Evolving from Small Data in BMO−1 , 2006, math/0609781.

[10]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[11]  V. Sverák,et al.  Minimal initial data for potential Navier-Stokes singularities , 2009 .

[12]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[13]  M. Cannone Self-Similar Solutions for Navier-Stokes Equations in R 3 , 2022 .

[14]  G.Seregin A certain necessary condition of potential blow up for Navier-Stokes equations , 2011, 1104.3615.

[15]  Л Искауриаза,et al.  $L_{3,\infty}$-решения уравнений Навье - Стокса и обратная единственность@@@$L_{3,\infty}$-solutions of the Navier - Stokes equations and backward uniqueness , 2003 .

[16]  Alfred P. Sloanfellowship Well-posedness for the Navier-stokes Equations , 1999 .

[17]  Matthias Hieber,et al.  On the Equation div u = g and Bogovskii’s Operator in Sobolev Spaces of Negative Order , 2006 .

[18]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[19]  Jean Mawhin,et al.  Leray-Schauder degree: a half century of extensions and applications , 1999 .

[20]  L. Brandolese Fine Properties of Self-Similar Solutions of the Navier–Stokes Equations , 2008, 0803.0210.

[21]  Hao Jia,et al.  Minimal L3-Initial Data for Potential Navier-Stokes Singularities , 2009, SIAM J. Math. Anal..

[22]  C. P. Calderón Addendum to the Paper Ëxistence of Weak Solutions for the Navier-Stokes Equations with Initial Data in L p " , 1990 .

[23]  C. P. Calderón Existence of weak solutions for the Navier-Stokes equations with initial data in ^{} , 1990 .

[24]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[25]  Fanghua Lin,et al.  A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .

[26]  Lawrence C. Evans,et al.  Quasiconvexity and partial regularity in the calculus of variations , 1986 .

[27]  O. Ladyzhenskaya,et al.  On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier—Stokes equations , 1999 .

[28]  Terence Tao Localisation and compactness properties of the Navier-Stokes global regularity problem , 2011 .