Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation

We present a framework for physics-based animation of deforming solids and fluids. By merging the equations of solid mechanics with the Navier-Stokes equations using a particle-based Lagrangian approach, we are able to employ a unified method to animate both solids and fluids as well as phase transitions. Central to our framework is a hybrid implicit-explicit surface generation approach, which is capable of representing fine surface detail as well as handling topological changes in interactive time for moderately complex objects. The generated surface is represented by oriented point samples, which adapt to the new position of the particles by minimizing the potential energy of the surface subject to geometric constraints. We illustrate our algorithm on a variety of examples ranging from stiff elastic and plasto-elastic materials to fluids with variable viscosity.

[1]  Matthias Teschner,et al.  Interaction of fluids with deformable solids: Research Articles , 2004 .

[2]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[3]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[4]  Marie-Paule Cani,et al.  Space-Time Adaptive Simulation of Highly Deformable Substances , 1999 .

[5]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[6]  Marie-Paule Cani,et al.  Animating Lava Flows , 1999, Graphics Interface.

[7]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[8]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[9]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[10]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[11]  Mathieu Desbrun,et al.  Animating soft substances with implicit surfaces , 1995, SIGGRAPH.

[12]  A. Adamson,et al.  Approximating bounded, nonorientable surfaces from points , 2004, Proceedings Shape Modeling Applications, 2004..

[13]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[14]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[15]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[16]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[17]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[18]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[19]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[20]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[21]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[22]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[23]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[24]  Matthias Zwicker,et al.  Surface splatting , 2001, SIGGRAPH.

[25]  Markus H. Gross,et al.  Contact Handling for Deformable Point-Based Objects , 2004, VMV.

[26]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[27]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[28]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[29]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[30]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[31]  John Platt,et al.  Heating and melting deformable models (from goop to glop) , 1989 .

[32]  Marc Alexa,et al.  Approximating Bounded, Non-Orientable Surfaces from Points (Figures 5, 6, and 7) , 2004, SMI.

[33]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[34]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[35]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[36]  Mark Carlson,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, SIGGRAPH 2004.

[37]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[38]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[39]  Mathieu Desbrun,et al.  Active Implicit Surface for Animation , 1998, Graphics Interface.

[40]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[41]  Leif Kobbelt,et al.  High-quality point-based rendering on modern GPUs , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[42]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH Courses.

[43]  Philip Dutré,et al.  Interactive boolean operations on surfel-bounded solids , 2003, ACM Trans. Graph..

[44]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH.

[45]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..