Domestication evolution, genetics and genomics in wheat

[1]  L. Pearson The Diversity and Evolution of Plants , 2023 .

[2]  M. Kislev TRITICUM PARVICOCCUM SP. NOV., THE OLDEST NAKED WHEAT , 2013 .

[3]  A. Aaronsohn Agricultural and Botanical Explorations in Palestine , 2011 .

[4]  J. Dvorak,et al.  Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes , 2010, BMC Genomics.

[5]  J. Dvorak,et al.  Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.) , 2010, BMC Genomics.

[6]  A. Brown Variation under domestication in plants: 1859 and today , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  P. Gepts Crop Domestication as a Long‐Term Selection Experiment , 2010 .

[8]  P. Langridge,et al.  Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS , 2010, BMC Genomics.

[9]  E. Nevo,et al.  Drought and salt tolerances in wild relatives for wheat and barley improvement. , 2010, Plant, cell & environment.

[10]  Simon Griffiths,et al.  A Genetic Framework for Grain Size and Shape Variation in Wheat[C][W] , 2010, Plant Cell.

[11]  R. Allaby Integrating the processes in the evolutionary system of domestication. , 2010, Journal of experimental botany.

[12]  J. Dvorak,et al.  Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species , 2010, BMC Genomics.

[13]  L. Brodsky,et al.  Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat , 2010, Mobile DNA.

[14]  R. Allaby,et al.  Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops , 2010 .

[15]  E. Nevo,et al.  Wheat Evolution, Domestication, and Improvement , 2009 .

[16]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[17]  B. Carver,et al.  Wheat : science and trade , 2009 .

[18]  G. Bai,et al.  The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci , 2009, Theoretical and Applied Genetics.

[19]  J. Cockram,et al.  PCR‐Based Markers Diagnostic for Spring and Winter Seasonal Growth Habit in Barley , 2009 .

[20]  M. Heun,et al.  On the domestication genetics of self-fertilizing plants , 2009 .

[21]  Pierre Sourdille,et al.  A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B , 2008, Science.

[22]  R. C. Johnson,et al.  Gene Banks Pay Big Dividends to Agriculture, the Environment, and Human Welfare , 2008, PLoS biology.

[23]  P. K. Gupta,et al.  Wheat Genomics: Present Status and Future Prospects , 2008, International journal of plant genomics.

[24]  E. Nevo,et al.  Wild emmer: genetic resources, gene mapping and potential for wheat improvement , 2008, Euphytica.

[25]  G. Willcox,et al.  Early Holocene cultivation before domestication in northern Syria , 2008 .

[26]  P. Catalán,et al.  Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. , 2008, Molecular phylogenetics and evolution.

[27]  B. Gill,et al.  Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice , 2008, Functional & Integrative Genomics.

[28]  B. Kilian,et al.  Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. , 2007, Molecular biology and evolution.

[29]  V. Nalam,et al.  Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.) , 2007, Theoretical and Applied Genetics.

[30]  S. Glémin,et al.  Grinding up wheat: a massive loss of nucleotide diversity since domestication. , 2007, Molecular biology and evolution.

[31]  Jan Dvorak,et al.  Genome Plasticity a Key Factor in the Success of Polyploid Wheat Under Domestication , 2007, Science.

[32]  M. Balter Seeking Agriculture's Ancient Roots , 2007, Science.

[33]  M. Feldman,et al.  Domestication of emmer wheat and evolution of free-threshing tetraploid wheat , 2007 .

[34]  Kellye Eversole,et al.  Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders , 2007 .

[35]  B. Gill,et al.  Genetics and genomics of wheat domestication-driven evolution , 2007 .

[36]  K. Kashkush Genome-wide impact of transcriptional activation of long terminal repeat retrotransposons on the expression of adjacent host genes , 2007 .

[37]  E. Nevo Evolution of wild wheat and barley and crop improvement: Studies at the Institute of Evolution , 2007 .

[38]  D. Fuller Contrasting Patterns in Crop Domestication and Domestication Rates: Recent Archaeobotanical Insights from the Old World , 2007, Annals of botany.

[39]  J. Higgins,et al.  The FLOWERING LOCUS T-Like Gene Family in Barley (Hordeum vulgare) , 2007, Genetics.

[40]  W. Powell,et al.  Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. , 2007, Journal of experimental botany.

[41]  J. Dvorak,et al.  The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication , 2007, Theoretical and Applied Genetics.

[42]  Bruce D. Smith,et al.  The Molecular Genetics of Crop Domestication , 2006, Cell.

[43]  J. Dubcovsky,et al.  A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat , 2006, Science.

[44]  B. Gill,et al.  Identification and mapping of a tiller inhibition gene (tin3) in wheat , 2006, Theoretical and Applied Genetics.

[45]  J. Dvorak,et al.  Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. , 2006, Molecular biology and evolution.

[46]  K. Tanno,et al.  How Fast Was Wild Wheat Domesticated? , 2006, Science.

[47]  R. J. Giles,et al.  GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats , 2006, Theoretical and Applied Genetics.

[48]  F. Salamini,et al.  Candidate genes for barley mutants involved in plant architecture: an in silico approach , 2006, Theoretical and Applied Genetics.

[49]  B. Gill,et al.  Multiple genetic pathways for seed shattering in the grasses , 2006, Functional & Integrative Genomics.

[50]  B. Gill,et al.  Molecular Characterization of the Major Wheat Domestication Gene Q , 2006, Genetics.

[51]  D. Laurie,et al.  The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley , 2005, Science.

[52]  P. Parsons Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency , 2005, Biological reviews of the Cambridge Philosophical Society.

[53]  J. Hancock Contributions of domesticated plant studies to our understanding of plant evolution. , 2005, Annals of botany.

[54]  Jan Dvorak,et al.  Tempos of Gene Locus Deletions and Duplications and Their Relationship to Recombination Rate During Diploid and Polyploid Evolution in the Aegilops-Triticum Alliance , 2005, Genetics.

[55]  N. Watanabe The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars , 2005, Euphytica.

[56]  J. David,et al.  Estimation of Long-Term Effective Population Sizes Through the History of Durum Wheat Using Microsatellite Data , 2005, Genetics.

[57]  A. Brandolini,et al.  A reconsideration of the domestication geography of tetraploid wheats , 2005, Theoretical and Applied Genetics.

[58]  D. Laurie,et al.  Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA , 2005, Theoretical and Applied Genetics.

[59]  Miftahudin,et al.  Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis , 2004, Genetics.

[60]  S. Nasuda,et al.  Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. , 2004, Theoretical and Applied Genetics.

[61]  R. Richards,et al.  Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S , 2004, Theoretical and Applied Genetics.

[62]  D. Piperno,et al.  Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis , 2004, Nature.

[63]  Avraham A. Levy,et al.  Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization , 2004 .

[64]  E. Nevo,et al.  Microsatellites within genes: structure, function, and evolution. , 2004, Molecular biology and evolution.

[65]  George Willcox,et al.  Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates valley , 2004 .

[66]  I. Cakmak,et al.  Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat , 2004 .

[67]  Kenji Kato,et al.  Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A , 2003 .

[68]  K. Eskridge,et al.  Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat , 2003 .

[69]  L. Yan,et al.  Positional cloning of the wheat vernalization gene VRN1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  B. Gill,et al.  A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. , 2003, Genetics.

[71]  G. Coupland,et al.  The Evolution of CONSTANS-Like Gene Families in Barley, Rice, and Arabidopsis1 , 2003, Plant Physiology.

[72]  E. Nevo,et al.  Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Frary,et al.  Comparative Genetics of Crop Plant Domestication and Evolution , 2003 .

[74]  E. Nevo,et al.  Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review , 2002, Molecular ecology.

[75]  Y. Sakata,et al.  Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats , 2002 .

[76]  A. Brandolini,et al.  AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. , 2002, Molecular biology and evolution.

[77]  B. Gill,et al.  Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. , 2002, Genome.

[78]  A. Beiles,et al.  Climatic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel , 2002, Heredity.

[79]  R. Haselkorn,et al.  Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Andrea Brandolini,et al.  Genetics and geography of wild cereal domestication in the near east , 2002, Nature Reviews Genetics.

[81]  M. Feldman,et al.  Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. , 2002, Genetics.

[82]  W. Rice Evolution of sex: Experimental tests of the adaptive significance of sexual recombination , 2002, Nature Reviews Genetics.

[83]  E. Nevo,et al.  Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides , 2002 .

[84]  S. Kresovich,et al.  Molecular diversity, structure and domestication of grasses. , 2001, Genetical research.

[85]  E. Kellogg,et al.  Evolutionary history of the grasses. , 2001, Plant physiology.

[86]  H. Miura,et al.  Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat , 2000, Theoretical and Applied Genetics.

[87]  N. Watanabe,et al.  The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat , 2000, Euphytica.

[88]  A B Korol,et al.  Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. , 2000, Genome research.

[89]  M. Feldman,et al.  A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping , 2000, Euphytica.

[90]  A. Beiles,et al.  Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. , 2000, Molecular biology and evolution.

[91]  J. Dvorak,et al.  The Q locus of Iranian and European spelt wheat , 2000, Theoretical and Applied Genetics.

[92]  M. Shah,et al.  Molecular Mapping of Loci for Agronomic Traits on Chromosome 3A of Bread Wheat , 1999 .

[93]  H. Miura,et al.  Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat , 1999, Theoretical and Applied Genetics.

[94]  M. Ganal,et al.  A microsatellite map of wheat. , 1998, Genetics.

[95]  C. Yen,et al.  Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat , 1998, Genetic Resources and Crop Evolution.

[96]  Kiyoaki Kato,et al.  RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat , 1998, Euphytica.

[97]  F. Salamini,et al.  SITE OF EINKORN WHEAT DOMESTICATION IDENTIFIED BY DNA FINGERPRINTING , 1997 .

[98]  N. Barton,et al.  The evolution of recombination: removing the limits to natural selection. , 1997, Genetics.

[99]  S. Tanksley,et al.  Seed banks and molecular maps: unlocking genetic potential from the wild. , 1997, Science.

[100]  G. Scoles,et al.  The genetics of rachis fragility and glume tenacity in semi-wild wheat , 1997, Euphytica.

[101]  B. Gill,et al.  Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. , 1996, Genetics.

[102]  A. Mujeeb-Kazi,et al.  Inheritance of threshability in synthetic hexaploid (Triticum turgidum x T. tauschii) by T. aestivum crosses , 1996 .

[103]  R. Cantrell,et al.  Evaluation of Lines Derived from Wild Emmer Chromosome Substitutions: II. Agronomic Traits , 1996 .

[104]  Andrew H. Paterson,et al.  Convergent Domestication of Cereal Crops by Independent Mutations at Corresponding Genetic Loci , 1995, Science.

[105]  J Dvorák,et al.  The evolution of polyploid wheats: identification of the A genome donor species. , 1993, Genome.

[106]  D. Nadel,et al.  Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel , 1992 .

[107]  K. Tsunewaki,et al.  Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. , 1991, Idengaku zasshi.

[108]  G. Hillman,et al.  Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications , 1990 .

[109]  J. Snape,et al.  Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters , 1985, Theoretical and Applied Genetics.

[110]  H. Sharma,et al.  Inheritance of tough rachis in crosses of Triticum monococcum and T. boeoticum , 1980 .

[111]  H. Dhaliwal,et al.  REPRODUCTIVE ISOLATION OF TRITICUM BOEOTICUM AND TRITICUM URARTU AND THE ORIGIN OF THE TETRAPLOID WHEATS , 1976 .

[112]  B. Johnson IDENTIFICATION OF THE APPARENT B-GENOME DONOR OF WHEAT , 1975 .

[113]  G. Rowland,et al.  ORIGIN OF THE FREE THRESHING CHARACTER IN HEXAPLOID WHEAT , 1974 .

[114]  W. Williams Evolution of Crop Plants , 1965, Nature.

[115]  E. R. Kerber,et al.  Wheat: Reconstitution of the Tetraploid Component (AABB) of Hexaploids , 1964, Science.

[116]  M. Muramatsu Dosage Effect of the Spelta Gene Q of Hexaploid Wheat. , 1963, Genetics.

[117]  Harriet Ritvo,et al.  The Variation of Animals and Plants under Domestication , 1868, The British and foreign medico-chirurgical review.

[118]  C. Darwin,et al.  The Variation of Animals and Plants under Domestication , 1868 .

[119]  C. Kole Wild Crop Relatives: Genomic and Breeding Resources , 2011 .

[120]  B. Kilian,et al.  Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides) , 2010, Genetic Resources and Crop Evolution.

[121]  D. Somers,et al.  Genome-Wide Reduction of Genetic Diversity in Wheat Breeding , 2009 .

[122]  G. Muehlbauer,et al.  Genetics and Genomics of the Triticeae , 2009 .

[123]  E. Nevo Ecological genomics of natural plant populations: the Israeli perspective. , 2009, Methods in molecular biology.

[124]  E. Paux,et al.  A Toolbox for Triticeae Genomics , 2009 .

[125]  A. Schulman,et al.  Genomics of Transposable Elements in the Triticeae , 2009 .

[126]  Z. Frenkel,et al.  Methods for Genetic Analysis in the Triticeae , 2009 .

[127]  N. Stein Physical Mapping in the Triticeae , 2009 .

[128]  J. Dvorak Triticeae Genome Structure and Evolution , 2009 .

[129]  B. Kilian,et al.  Domestication of the Triticeae in the Fertile Crescent , 2009 .

[130]  S. Schuster Next-generation sequencing transforms today's biology , 2008, Nature Methods.

[131]  B. Gaut,et al.  Colloquium Papers: Plant domestication, a unique opportunity to identify the genetic basis of adaptation , 2007 .

[132]  D. L. Wilson,et al.  Wheat Genetics Resource Center: The First 25 Years , 2006 .

[133]  V. Nalam,et al.  Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.) , 2005, Theoretical and Applied Genetics.

[134]  E. Nevo,et al.  Genomic diversity in nature and domestication. , 2005 .

[135]  V. Korzun,et al.  Comparative genetic mapping of loci affecting plant height and development in cereals , 2004, Euphytica.

[136]  O. Riera-Lizarazu,et al.  Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.) , 2004, Theoretical and Applied Genetics.

[137]  Peter Hedden,et al.  The genes of the Green Revolution. , 2003, Trends in genetics : TIG.

[138]  A. Beiles,et al.  Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel , 2003, Heredity.

[139]  Professor Eviatar Nevo,et al.  Evolution of Wild Emmer and Wheat Improvement , 2002, Springer Berlin Heidelberg.

[140]  A. Meister,et al.  Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. , 2000, Genetics.

[141]  C. Qualset,et al.  The Origins of Agriculture and Crop Domestication , 1999 .

[142]  Hossein Baharvand,et al.  Genetics and genomics , 1998, Nature.

[143]  J. Doebley Isozymic Evidence and the Evolution of Crop Plants , 1989 .

[144]  T. R. Dudley,et al.  Isozymes in Plant Biology , 1989, Springer Netherlands.

[145]  Maria Hopf,et al.  Domestication of plants in the old world , 1988 .

[146]  E. R. Sears,et al.  The Wild Gene Resources of Wheat , 1981 .

[147]  R. Riley Wheat Genetics , 1963, Nature.

[148]  E. R. Sears The aneuploids of common wheat , 1954 .

[149]  E. R. Sears,et al.  The origin of Triticum spelta and its free-threshing hexaploid relatives. , 1946, The Journal of heredity.

[150]  H. Kihara Discovery of the DD-analyser, one of the ancestors of Triticum vulgare , 1944 .

[151]  M. Yano,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 References an Snp Caused Loss of Seed Shattering during Rice Domestication , 2022 .