Optical sensing by using Photonic Crystal based Mach–Zehnder interferometer

Abstract We demonstrate that Photonic Crystal (PhC) based Mach–Zehnder interferometers (MZIs) can be used to realize optical biosensor by using the Fano resonance of the MZIs. Small analyte presented in the MZIs would, however, excite higher-Q Fano resonance of the system than the big one. The scattering object in the arm would create a resonant path (discrete state) for the MZIs, which interacts with the input broadband continuum spectrum and thus results in the Fano resonance of the system. We can therefore detect the location, size and refractive index of biological analyte (down to approximately 100 nm in size) in the MZIs via the output transmission spectrum. An analytical model, which outlines the sensing mechanism, is presented together with the finite difference time domain computer simulations. Both of them validate the proposed sensing capacity.

[1]  Xavier Le Roux,et al.  Compact wavelength-insensitive fabrication-tolerant silicon-on-insulator beam splitter. , 2010, Optics letters.

[2]  Friedrich,et al.  Physical realization of bound states in the continuum. , 1985, Physical review. A, General physics.

[3]  Martin Kristensen,et al.  Photonic-crystal waveguide biosensor. , 2007, Optics express.

[4]  J. Buriak,et al.  Specific detection of proteins using photonic crystal waveguides. , 2008, Optics express.

[5]  Brian T. Cunningham,et al.  Plastic distributed feedback laser biosensor , 2008 .

[6]  Werner Schrenk,et al.  Terahertz Active Photonic Crystals for Condensed Gas Sensing , 2011, Sensors.

[7]  Min Qiu,et al.  Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals , 2002 .

[8]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[9]  R. McPhedran,et al.  Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers. , 2004, Optics express.

[10]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[11]  Muzammil Iqbal,et al.  Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  P. Dumon,et al.  Resonance Enhancement in Silicon-on-Insulator-Based Two-Ring Mach–Zehnder Interferometer , 2008, IEEE Photonics Technology Letters.

[13]  Tao Zhu,et al.  Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber , 2011 .

[14]  Benjamin J. Eggleton,et al.  Reconfigurable photonic crystal circuits , 2010 .

[15]  Ting Mei,et al.  Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer , 2011 .

[16]  Hanne Ludvigsen,et al.  Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer , 2012 .

[17]  A. Miroshnichenko,et al.  Manipulation of the resonance interaction in Mach-Zehnder-Fano interferometers , 2011 .

[18]  M.K. Smit,et al.  Reduction of Propagation Loss in Pillar-Based Photonic Crystal Waveguides , 2009, Journal of Lightwave Technology.

[19]  Chi Chiu Chan,et al.  Mach–Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement , 2011, IEEE Photonics Technology Letters.

[20]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[21]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[22]  Shanhui Fan,et al.  Ring-coupled Mach-Zehnder interferometer optimized for sensing. , 2009, Applied Optics.

[23]  Y. Kivshar,et al.  Mach–Zehnder–Fano interferometer , 2009, 0904.3985.

[24]  Ángel Maquieira,et al.  Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. , 2010, Optics express.

[25]  E. Chow,et al.  Ultra compact biochemical sensor built with two dimensional photonic crystal microcavity , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..