Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm

Modern machining processes are now-a-days widely used by manufacturing industries in order to produce high quality precise and very complex products. These modern machining processes involve large number of input parameters which may affect the cost and quality of the products. Selection of optimum machining parameters in such processes is very important to satisfy all the conflicting objectives of the process. In this research work, a newly developed advanced algorithm named 'teaching-learning-based optimization (TLBO) algorithm' is applied for the process parameter optimization of selected modern machining processes. This algorithm is inspired by the teaching-learning process and it works on the effect of influence of a teacher on the output of learners in a class. The important modern machining processes identified for the process parameters optimization in this work are ultrasonic machining (USM), abrasive jet machining (AJM), and wire electrical discharge machining (WEDM) process. The examples considered for these processes were attempted previously by various researchers using different optimization techniques such as genetic algorithm (GA), simulated annealing (SA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), harmony search (HS), shuffled frog leaping (SFL) etc. However, comparison between the results obtained by the proposed algorithm and those obtained by different optimization algorithms shows the better performance of the proposed algorithm.

[1]  Neelesh Kumar Jain,et al.  Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms , 2007 .

[2]  P. J. Pawar,et al.  Grinding process parameter optimization using non-traditional optimization algorithms , 2010 .

[3]  T. A. El-Taweel,et al.  Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM , 2005 .

[4]  M. S. Shunmugam,et al.  Selection of optimal conditions in multi-pass face-milling using a genetic algorithm , 2000 .

[5]  Jun Wang,et al.  Multiple-objective optimisation of machining operations based on neural networks , 1993 .

[6]  S. Kanzaki,et al.  Material response to particle impact during abrasive jet machining of alumina ceramics , 2003 .

[7]  Biing-Hwa Yan,et al.  Scrap wafer regeneration by precise abrasive jet machining with novel composite abrasive for design of experiments , 2011 .

[8]  F. C. Tsai,et al.  A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel , 2008 .

[9]  T. N. Goh,et al.  An empirical study of parameters in abrasive jet machining , 1989 .

[10]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[11]  Vivek Patel,et al.  An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems , 2012 .

[12]  João Paulo Davim,et al.  Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm , 2010 .

[13]  C. Wang,et al.  A Modified Genetic Algorithm Based Optimisation of Milling Parameters , 1999 .

[14]  G. K. Lal,et al.  An experimental study of abrasive jet machining , 1984 .

[15]  Vedat Toğan,et al.  Design of planar steel frames using Teaching–Learning Based Optimization , 2012 .

[16]  Vinod Kumar,et al.  Parametric optimization of ultrasonic machining of co-based super alloy using the Taguchi multi-objective approach , 2009, Prod. Eng..

[17]  R. Venkata Rao,et al.  Advanced Modeling and Optimization of Manufacturing Processes: International Research and Development , 2013 .

[18]  N. Ramesh Babu,et al.  A New Approach for Selection of Optimal Process Parameters in Abrasive Water Jet Cutting , 1999 .

[19]  M Tolouei-Rad,et al.  On the optimization of machining parameters for milling operations , 1997 .

[20]  R. Saravanan,et al.  A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations , 2002 .

[21]  Kishalay Mitra,et al.  Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm , 2004 .

[22]  Albert J. Shih,et al.  ABRASIVE JET MACHINING FOR EDGE GENERATION , 2007 .

[23]  Anima Naik,et al.  Data Clustering Based on Teaching-Learning-Based Optimization , 2011, SEMCCO.

[24]  C. A. van Luttervelt,et al.  Analytical and experimental modelling of the abrasive water jet cutting of ductile materials , 1998 .

[25]  Taher Niknam,et al.  $\theta$-Multiobjective Teaching–Learning-Based Optimization for Dynamic Economic Emission Dispatch , 2012, IEEE Systems Journal.

[26]  Taher Niknam,et al.  Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method , 2012 .

[27]  N. Ramakrishnan,et al.  A study on the shape of the surface generated by abrasive jet machining , 2002 .

[28]  G. Choi,et al.  Process analysis and monitoring in abrasive water jet machining of alumina ceramics , 1997 .

[29]  Ali R. Yildiz,et al.  A novel hybrid immune algorithm for global optimization in design and manufacturing , 2009 .

[30]  M. Hashish,et al.  A Model for Abrasive-Waterjet (AWJ) Machining , 1989 .

[31]  M. Hashish A Modeling Study of Metal Cutting With Abrasive Waterjets , 1984 .

[32]  J. S. Khamba,et al.  Macromodel for Ultrasonic Machining of Titanium and its Alloys: Designed Experiments , 2007 .

[33]  Makarand S. Kulkarni,et al.  Combined Taguchi and dual response method for optimization of a centerless grinding operation , 2003 .

[34]  P. J. Pawar,et al.  Parameter Optimization of Ultrasonic Machining Process Using Nontraditional Optimization Algorithms , 2010 .

[35]  Tai-chiu Lee,et al.  Mechanism of the ultrasonic machining of ceramic composites , 1997 .

[36]  Türkay Dereli,et al.  Dynamic optimization of multipass milling operations via geometric programming , 1999 .

[37]  Li Yan,et al.  Applications of artificial intelligence in grinding , 1994 .

[38]  Z. Y. Wang,et al.  Dynamic Analysis of the Ultrasonic Machining Process , 1995 .

[39]  Godfrey C. Onwubolu,et al.  Performance-based optimization of multi-pass face milling operations using Tribes , 2006 .

[40]  Yoram Koren,et al.  ADAPTIVE CONTROL OPTIMIZATION OF GRINDING. , 1981 .

[41]  C. A. van Luttervelt,et al.  Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material , 1998 .

[42]  Yoke San Wong,et al.  Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing , 2005 .

[43]  Andrew Y. C. Nee,et al.  Micro-computer-based optimization of the surface grinding process , 1992 .

[44]  Bijaya K. Panigrahi,et al.  Application of Multi-Objective Teaching-Learning-Based Algorithm to an Economic Load Dispatch Problem with Incommensurable Objectives , 2011, SEMCCO.

[45]  Taher Niknam,et al.  Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants , 2012 .

[46]  P. J. Pawar,et al.  Modelling and optimization of process parameters of wire electrical discharge machining , 2009 .

[47]  A. Gopala Krishna RETRACTED: Optimization of surface grinding operations using a differential evolution approach , 2007 .

[48]  P. J. Pawar,et al.  Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms , 2010, Appl. Soft Comput..

[49]  J. Paulo Davim,et al.  Optimisation of process parameters of mechanical type advanced machining processes using a simulated annealing algorithm , 2010 .

[50]  M. S. Shunmugam,et al.  Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm , 2005 .

[51]  M. Fesanghary,et al.  Optimization of multi-pass face-milling via harmony search algorithm , 2009 .

[52]  R. Saravanan,et al.  Selection of optimal machining parameters for multi-tool milling operations using a memetic algorithm , 2006 .

[53]  Y. S. Tarng,et al.  Determination of optimal cutting parameters in wire electrical discharge machining , 1995 .

[54]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[55]  Bijoy Bhattacharyya,et al.  Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation , 2008 .

[56]  Yunn-Shiuan Liao,et al.  A study on the machining-parameters optimization of wire electrical discharge machining , 1997 .

[57]  Ian M. Hutchings,et al.  A MODEL FOR THE EROSION OF METALS BY SPHERICAL PARTICLES AT NORMAL INCIDENCE - eScholarship , 1981 .

[58]  M. Kanthababu,et al.  Investigation of wire electrical discharge machining characteristics of Al6063/SiCp composites , 2011 .

[59]  Yung C. Shin,et al.  Optimization of machining conditions with practical constraints , 1992 .

[60]  Amar Patnaik,et al.  Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method , 2007 .