Fuzzy regular languages over finite and infinite words

We consider finite automata over semirings and quemirings accepting finite and infinite words, respectively. We obtain Kleene theorems for fuzzy languages consisting of finite and infinite words. Furthermore, we introduce regular fuzzy grammars and linear fuzzy systems and we show that both of them specify the class of recognizable fuzzy languages consisting of finite and infinite words.

[1]  W. Kuich,et al.  On Iteration Semiring-Semimodule Pairs , 2007 .

[2]  Mingsheng Ying,et al.  A formal model of computing with words , 2002, IEEE Trans. Fuzzy Syst..

[3]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[4]  K. Peeva Fuzzy automata and languages: theory and applications , 2004 .

[5]  W. Wechler The concept of fuzziness in automata and language theory , 1978 .

[6]  Patricia Bouyer,et al.  A Kleene/Büchi-like Theorem for Clock Languages , 2001, J. Autom. Lang. Comb..

[7]  Witold Pedrycz,et al.  Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids , 2005, Fuzzy Sets Syst..

[8]  George Rahonis,et al.  Infinite fuzzy computations , 2005, Fuzzy Sets Syst..

[9]  W. Kuich On skew formal power series , 2005 .

[10]  Manfred Droste,et al.  Skew and infinitary formal power series , 2003, Theor. Comput. Sci..

[11]  J. Conway Regular algebra and finite machines , 1971 .

[12]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[13]  John N. Mordeson,et al.  Regular Fuzzy Expressions , 2003 .

[14]  Zoltán Ésik,et al.  Some varieties of iteration theories , 1984, Bull. EATCS.

[15]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[16]  Berndt Farwer,et al.  ω-automata , 2002 .

[17]  Arun K. Majumdar,et al.  A formal power series approach to the construction of minimal fuzzy automata , 1991, Inf. Sci..

[18]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[19]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[20]  Madan M. Gupta,et al.  Fuzzy automata and decision processes , 1977 .

[21]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[22]  Li Sheng,et al.  Regular grammars with truth values in lattice-ordered monoid and their languages , 2006, Soft Comput..

[23]  Kamala Krithivasan,et al.  Fuzzy ω-automata , 2001 .

[24]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[25]  W. Kuich,et al.  The degree of distinguishability of stochastic sequential machines and related problems. , 2005 .

[26]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[27]  Zoran Ognjanovic A Tableau-Like Proof Procedure for Normal Modal Logics , 1994, Theor. Comput. Sci..

[28]  H. Priestley,et al.  Distributive Lattices , 2004 .

[29]  Zoltán Ésik,et al.  Iteration Theories , 1993, EATCS Monographs on Theoretical Computer Science.