TAPES-G: a grid-based terrain analysis program for the environmental sciences

Abstract TAPES-G is a grid-based terrain analysis program that computes slope, aspect, upslope contributing area, profile and plan curvature and several other topographic attributes for each cell of a square-grid digital elevation model (DEM). These topographic attributes can be used to represent key physical processes in a form simple enough to allow modeling at catchment and larger scales. The program creates initially a depressionless DEM if desired. Upslope contributing area can be calculated using either the classical D8 algorithm, the quasi-random Rho8 algorithm, the multiple flow direction FD8/FRho8 algorithm or Costa-Cabral and Burges's stream tube-based DEMON algorithm. Stream networks, sub-catchments and the spatial distribution of individual attributes can be plotted interactively or copied to the ARC/INFO geographic information system (GIS) for further processing.

[1]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[2]  I. Moore,et al.  Terrain‐based catchment partitioning and runoff prediction using vector elevation data , 1991 .

[3]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[4]  J. Fairfield,et al.  Drainage networks from grid digital elevation models , 1991 .

[5]  Ian D. Moore,et al.  Terrain attributes: estimation methods and scale effects , 1993 .

[6]  Jeffrey G. Arnold,et al.  Application of geographic information systems in hydrology and water resources management: K. Kovar and H.P. Nachtnebel (editors), Institute of Hydrology, Wallingford, UK, 1993, 694 + xii pp., US$ 80.00, ISBN 0-947571-48-5 , 1995 .

[7]  John C. Gallant,et al.  EROS: a grid-based program for estimating spatially-distributed erosion indices , 1996 .

[8]  M. B. Beck,et al.  Modelling Change in Environmental Systems , 1995 .

[9]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[10]  Jaroslav Hofierka,et al.  Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis , 1993 .

[11]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[12]  M. Costa-Cabral,et al.  Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas , 1994 .

[13]  I. Moore,et al.  Length-slope factors for the Revised Universal Soil Loss Equation: simplified method of estimation , 1992 .

[14]  Rodger B.Grayson Ian D.Moore Effect Of Land-Surface Configuration On Catchment Hydrology , 1992 .

[15]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[16]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[17]  P. Holmgren Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation , 1994 .

[18]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[19]  Ian D. Moore,et al.  Modelling environmental heterogeneity in forested landscapes , 1993 .

[20]  M. Goodchild,et al.  Environmental Modeling with GIS , 1994 .

[21]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[22]  R. Dikau The application of a digital relief model to landform analysis in geomorphology , 2020 .

[23]  Nicholas J. Lea,et al.  An Aspect-Driven Kinematic Routing Algorithm , 1992 .