Extracting the Chern number from the dynamics of a Fermi gas: implementing a quantum Hall bar for cold atoms.

We propose a scheme to measure the quantized Hall conductivity of an ultracold Fermi gas initially prepared in a topological Chern insulating phase and driven by a constant force. We show that the time evolution of the center of mass, after releasing the cloud, provides a direct and clear signature of the topologically invariant Chern number. We discuss the validity of this scheme, highlighting the importance of driving the system with a sufficiently strong force to displace the cloud over measurable distances while avoiding band-mixing effects. The unusual shapes of the driven atomic cloud are qualitatively discussed in terms of a semiclassical approach.

[1]  S. Sarma,et al.  Topological insulators and metals in atomic optical lattices , 2009, 0901.3921.

[2]  Maciej Lewenstein,et al.  An optical-lattice-based quantum simulator for relativistic field theories and topological insulators , 2011, 1105.0932.

[3]  H. Zhai,et al.  Trapped Fermi gases in rotating optical lattices: realization and detection of the topological hofstadter insulator. , 2007, Physical review letters.

[4]  J. García-Ripoll,et al.  Seeing topological order in time-of-flight measurements. , 2011, Physical review letters.

[5]  Stability of the quantum spin Hall effect: Effects of interactions, disorder, and Z 2 topology , 2005, cond-mat/0508291.

[6]  N. Bray-Ali,et al.  Chern numbers hiding in time-of-flight images , 2011, 1105.3100.

[7]  M. Lukin,et al.  Fractional quantum Hall effect in optical lattices , 2006, 0706.0757.

[8]  E. Demler,et al.  Interferometric approach to measuring band topology in 2D optical lattices. , 2012, Physical review letters.

[9]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[10]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[11]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[12]  Z. Wang,et al.  Realizing and detecting the quantum Hall effect without landau levels by using ultracold atoms. , 2008, Physical review letters.

[13]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.

[14]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[15]  Z. Meng,et al.  Quantum phase transitions in the Kane-Mele-Hubbard model , 2011, 1111.3949.

[16]  Maciej Lewenstein,et al.  Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems , 2012 .

[17]  Edge transport in 2D cold atom optical lattices. , 2006, Physical review letters.

[18]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[19]  M. Lewenstein,et al.  Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators , 2013, 1301.4959.

[20]  W. Phillips,et al.  Observation of a superfluid Hall effect , 2012, Proceedings of the National Academy of Sciences.

[21]  Mohammad Hafezi,et al.  Robust optical delay lines with topological protection , 2011, 1102.3256.

[22]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[23]  I Bloch,et al.  Experimental realization of strong effective magnetic fields in an optical lattice. , 2011, Physical review letters.

[24]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[25]  Tilman Esslinger,et al.  Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice , 2011, Nature.

[26]  P. Gaspard,et al.  Quantum Hall-like effect for cold atoms in non-Abelian gauge potentials , 2006, cond-mat/0609472.

[27]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[28]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[29]  N. Goldman,et al.  Detecting chiral edge states in the Hofstadter optical lattice. , 2012, Physical review letters.

[30]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[31]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[32]  Xiong-Jun Liu,et al.  Quantum anomalous Hall effect with cold atoms trapped in a square lattice , 2010, 1003.2736.

[33]  M. Lewenstein,et al.  Direct imaging of topological edge states in cold-atom systems , 2012, Proceedings of the National Academy of Sciences.

[34]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[35]  Lei Wang,et al.  Double transfer through Dirac points in a tunable honeycomb optical lattice , 2012, 1210.0904.

[36]  S. Sarma,et al.  Topological states in two-dimensional optical lattices , 2009, 0912.3559.

[37]  K. Klitzing The quantized Hall effect , 1986 .

[38]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[39]  Lei Wang,et al.  Proposal for direct measurement of topological invariants in optical lattices. , 2013, Physical review letters.

[40]  A. Paramekanti,et al.  Use of quantum quenches to probe the equilibrium current patterns of ultracold atoms in an optical lattice , 2012, 1204.5184.

[41]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[42]  N. R. Cooper,et al.  Mapping the Berry curvature from semiclassical dynamics in optical lattices , 2011, 1112.5616.

[43]  T. P. Meyrath,et al.  Bose Einstein Condensate in a Box , 2005 .

[44]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[45]  T. Esslinger,et al.  Conduction of Ultracold Fermions Through a Mesoscopic Channel , 2012, Science.

[46]  J. García-Ripoll,et al.  Hall response of interacting bosonic atoms in strong gauge fields: From condensed to fractional-quantum-Hall states , 2013, 1303.0747.

[47]  M. Buchhold,et al.  Time-reversal-invariant Hofstadter-Hubbard model with ultracold fermions. , 2012, Physical review letters.

[48]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[49]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[50]  J. Dalibard,et al.  Gauge fields for ultracold atoms in optical superlattices , 2009, 0910.4606.

[51]  N. Cooper,et al.  Z(2) topological insulators in ultracold atomic gases. , 2011, Physical review letters.

[52]  P. Morse Annals of Physics , 1957, Nature.

[53]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[54]  N. Goldman,et al.  Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals , 2012, 1209.1126.

[55]  M. Lewenstein,et al.  Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.

[56]  M. Kohmoto,et al.  Topological invariant and the quantization of the Hall conductance , 1985 .