Strong stability of singly-diagonally-implicit Runge--Kutta methods

This paper deals with the numerical solution of initial value problems, for systems of ordinary differential equations, by Runge-Kutta methods (RKMs) with special nonlinear stability properties indicated by the terms total-variation-diminishing (TVD), strongly stable and monotonic. Stepsize conditions, guaranteeing these properties, were studied earlier, see e.g. Shu and Osher [C.-W. Shu, S. Osher, J. Comput. Phys. 77 (1988) 439-471], Gottlieb et al. [S. Gottlieb, C.-W. Shu, E. Tadmor, SIAM Rev. 43 (2001) 89-112], Hundsdorfer and Ruuth [W.H. Hundsdorfer, S.J. Ruuth, Monotonicity for time discretizations, in: D.F. Griffiths, G.A. Watson (Eds.), Proc. Dundee Conference 2003, Report NA/217, Univ. Dundee, 2003, pp. 85-94], Higueras [I. Higueras, J. Sci. Computing 21 (2004) 193-223; I. Higueras, SIAM J. Numer. Anal. 43 (2005) 924-948], Gottlieb [S. Gottlieb, J. Sci. Computing 25 (2005) 105-128], Ferracina and Spijker [L. Ferracina, M.N. Spijker, SIAM J. Numer. Anal. 42 (2004) 1073-1093; L. Ferracina, M.N. Spijker, Math. Comp. 74 (2005) 201-219]. Special attention was paid to RKMs which are optimal, in that the corresponding stepsize conditions are as little restrictive as possible within a given class of methods. Extensive searches for such optimal methods were made in classes of explicit RKMs, see e.g. Gottlieb and Shu [S. Gottlieb, C.-W. Shu, Math. Comp. 67 (1998) 73-85], Spiteri and Ruuth [R.J. Spiteri, S.J. Ruuth, SIAM J. Numer. Anal. 40 (2002) 469-491; R.J. Spiteri, S.J. Ruuth, Math. Comput. Simulation 62 (2003) 125-135], Ruuth [S.J. Ruuth, Math. Comp. 75 (2006) 183-207]. In the present paper we search for methods that are optimal in the above sense, within the interesting class of singly-diagonally-implicit Runge-Kutta (SDIRK) methods, with s stages and order p. Some methods, with 1==3) which we conjecture to be optimal for p=2 and p=3, respectively. Furthermore we prove, for strongly stable SDIRK methods, the order barrier p=<4. We perform numerical experiments, to compare the theoretical properties of various optimal SDIRK methods to the actual TVD properties in the solution of a nonlinear test equation, the 1-dimensional Buckley-Leverett equation.

[1]  Eitan Tadmor,et al.  Strong Stability-Preserving High-Order Time Discretization , 2001 .

[2]  M. N. Spijker Contractivity in the numerical solution of initial value problems , 1983 .

[3]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[4]  Steven J. Ruuth,et al.  Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..

[5]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[6]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[7]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[8]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[9]  Inmaculada Higueras,et al.  Strong Stability for Additive Runge-Kutta Methods , 2006, SIAM J. Numer. Anal..

[10]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[11]  J. Kraaijevanger Contractivity of Runge-Kutta methods , 1991 .

[12]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[13]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[14]  M. N. Spijker Stepsize Conditions for General Monotonicity in Numerical Initial Value Problems , 2007, SIAM J. Numer. Anal..

[15]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[16]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[17]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[18]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[19]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[20]  Inmaculada Higueras,et al.  On Strong Stability Preserving Time Discretization Methods , 2004, J. Sci. Comput..

[21]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[22]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[23]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[24]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[25]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[26]  Brynjulf Owren,et al.  Runge-Kutta research in Trondheim , 1996 .

[27]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[28]  S. P. Nørsett,et al.  Attainable order of rational approximations to the exponential function with only real poles , 1977 .

[29]  Sigal Gottlieb,et al.  On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..

[30]  M. N. Spijker,et al.  Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods , 2004, SIAM J. Numer. Anal..

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[33]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[34]  Chi-Wang Shu,et al.  A Survey of Strong Stability Preserving High Order Time Discretizations , 2001 .

[35]  Steven J. Ruuth,et al.  Monotonicity for time discretizations , 2003 .

[36]  Z. Horváth,et al.  Positivity of Runge-Kutta and diagonally split Runge-Kutta methods , 1998 .

[37]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[38]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[39]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..