Extreme value copula estimation based on block maxima of a multivariate stationary time series

The core of the classical block maxima method consists of fitting an extreme value distribution to a sample of maxima over blocks extracted from an underlying series. In asymptotic theory, it is usually postulated that the block maxima are an independent random sample of an extreme value distribution. In practice however, block sizes are finite, so that the extreme value postulate will only hold approximately. A more accurate asymptotic framework is that of a triangular array of block maxima, the block size depending on the size of the underlying sample in such a way that both the block size and the number of blocks within that sample tend to infinity. The copula of the vector of componentwise maxima in a block is assumed to converge to a limit, which, under mild conditions, is then necessarily an extreme value copula. Under this setting and for absolutely regular stationary sequences, the empirical copula of the sample of vectors of block maxima is shown to be a consistent and asymptotically normal estimator for the limiting extreme value copula. Moreover, the empirical copula serves as a basis for rank-based, nonparametric estimation of the Pickands dependence function of the extreme value copula. The results are illustrated by theoretical examples and a Monte Carlo simulation study.

[1]  Johan Segers,et al.  Large-sample tests of extreme-value dependence for multivariate copulas , 2011 .

[2]  Johan Segers,et al.  Nonparametric estimation of an extreme-value copula in arbitrary dimensions , 2009, J. Multivar. Anal..

[3]  Johan Segers,et al.  Extreme-value copulas , 2009, 0911.1015.

[4]  Projection estimators of Pickands dependence functions , 2008 .

[5]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[6]  Herold Dehling,et al.  Empirical Process Techniques for Dependent Data , 2002 .

[7]  Jun Yan,et al.  A Non‐parametric Test of Exchangeability for Extreme‐Value and Left‐Tail Decreasing Bivariate Copulas , 2012 .

[8]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[9]  Stanislav Volgushev,et al.  Empirical and sequential empirical copula processes under serial dependence , 2011, J. Multivar. Anal..

[10]  Léo R. Belzile,et al.  Multivariate Extreme Value Distributions , 2015 .

[11]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[12]  Richard L. Smith,et al.  Estimating the Extremal Index , 1994 .

[13]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[14]  Christian Genest,et al.  A goodness-of-fit test for bivariate extreme-value copulas , 2011, 1102.2078.

[15]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[16]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[17]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[18]  J. Kingman,et al.  Random walks with stationary increments and renewal theory , 1979 .

[19]  Holger Dette,et al.  Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence , 2013 .

[20]  Holger Dette,et al.  A note on bootstrap approximations for the empirical copula process , 2010 .

[21]  E. J. Gumbel,et al.  Some Analytical Properties of Bivariate Extremal Distributions , 1967 .

[22]  L. Peng,et al.  Weighted estimation of the dependence function for an extreme-value distribution , 2013, 1303.4911.

[23]  L. Haan,et al.  On the block maxima method in extreme value theory: PWM estimators , 2013, 1310.3222.

[24]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[25]  H. Joe Multivariate extreme value distributions , 1997 .

[26]  Johan Segers,et al.  Nonparametric estimation of multivariate extreme-value copulas , 2011, 1107.2410.

[27]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[28]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[29]  H. Dette,et al.  New estimators of the Pickands dependence function and a test for extreme-value dependence , 2011, 1102.0405.

[30]  F. Amram Multivariate extreme value distributions for stationary Gaussian sequences , 1985 .

[31]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[32]  Arthur Charpentier,et al.  Tails of multivariate Archimedean copulas , 2009, J. Multivar. Anal..

[33]  J. Hüsler Multivariate extreme values in stationary random sequences , 1990 .

[34]  A. Walden,et al.  Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .

[35]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[36]  T. Hsing Extreme value theory for multivariate stationary sequences , 1989 .

[37]  Paul Deheuvels,et al.  On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .

[38]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[39]  Cl'ement Dombry,et al.  Maximum likelihood estimators for the extreme value index based on the block maxima method , 2013, 1301.5611.