Extreme value copula estimation based on block maxima of a multivariate stationary time series
暂无分享,去创建一个
[1] Johan Segers,et al. Large-sample tests of extreme-value dependence for multivariate copulas , 2011 .
[2] Johan Segers,et al. Nonparametric estimation of an extreme-value copula in arbitrary dimensions , 2009, J. Multivar. Anal..
[3] Johan Segers,et al. Extreme-value copulas , 2009, 0911.1015.
[4] Projection estimators of Pickands dependence functions , 2008 .
[5] R. C. Bradley. Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.
[6] Herold Dehling,et al. Empirical Process Techniques for Dependent Data , 2002 .
[7] Jun Yan,et al. A Non‐parametric Test of Exchangeability for Extreme‐Value and Left‐Tail Decreasing Bivariate Copulas , 2012 .
[8] J. Teugels,et al. Statistics of Extremes , 2004 .
[9] Stanislav Volgushev,et al. Empirical and sequential empirical copula processes under serial dependence , 2011, J. Multivar. Anal..
[10] Léo R. Belzile,et al. Multivariate Extreme Value Distributions , 2015 .
[11] Jonathan A. Tawn,et al. Bivariate extreme value theory: Models and estimation , 1988 .
[12] Richard L. Smith,et al. Estimating the Extremal Index , 1994 .
[13] J. Tawn. Modelling multivariate extreme value distributions , 1990 .
[14] Christian Genest,et al. A goodness-of-fit test for bivariate extreme-value copulas , 2011, 1102.2078.
[15] P. Massart,et al. Invariance principles for absolutely regular empirical processes , 1995 .
[16] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[17] P. Gänssler. Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .
[18] J. Kingman,et al. Random walks with stationary increments and renewal theory , 1979 .
[19] Holger Dette,et al. Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence , 2013 .
[20] Holger Dette,et al. A note on bootstrap approximations for the empirical copula process , 2010 .
[21] E. J. Gumbel,et al. Some Analytical Properties of Bivariate Extremal Distributions , 1967 .
[22] L. Peng,et al. Weighted estimation of the dependence function for an extreme-value distribution , 2013, 1303.4911.
[23] L. Haan,et al. On the block maxima method in extreme value theory: PWM estimators , 2013, 1310.3222.
[24] R. C. Bradley. Basic Properties of Strong Mixing Conditions , 1985 .
[25] H. Joe. Multivariate extreme value distributions , 1997 .
[26] Johan Segers,et al. Nonparametric estimation of multivariate extreme-value copulas , 2011, 1107.2410.
[27] J. Segers. Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.
[28] J. Segers,et al. RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.
[29] H. Dette,et al. New estimators of the Pickands dependence function and a test for extreme-value dependence , 2011, 1102.0405.
[30] F. Amram. Multivariate extreme value distributions for stationary Gaussian sequences , 1985 .
[31] E. Gumbel,et al. Statistics of extremes , 1960 .
[32] Arthur Charpentier,et al. Tails of multivariate Archimedean copulas , 2009, J. Multivar. Anal..
[33] J. Hüsler. Multivariate extreme values in stationary random sequences , 1990 .
[34] A. Walden,et al. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .
[35] J. Hüsler. Extremes and related properties of random sequences and processes , 1984 .
[36] T. Hsing. Extreme value theory for multivariate stationary sequences , 1989 .
[37] Paul Deheuvels,et al. On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .
[38] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[39] Cl'ement Dombry,et al. Maximum likelihood estimators for the extreme value index based on the block maxima method , 2013, 1301.5611.