Noyau de la chaleur et discretisation d’une variete riemannienne

[1]  I. Chavel,et al.  Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds , 1991 .

[2]  Isoperimetric Constants, the Geometry of Ends, and Large Time Heat Diffusion in Riemannian Manifolds , 1991 .

[3]  T. Coulhon Dimension à l'infini d'un semi-groupe analytique , 1990 .

[4]  A. Ancona Theorie du Potentiel sur les Graphes et les Varietes , 1990 .

[5]  Thierry Coulhon,et al.  Puissances d'un opérateur régularisant , 1990 .

[6]  Marches al'eatoires non sym'etriques sur les groupes unimodulaires , 1990 .

[7]  D. Stroock,et al.  Upper bounds for symmetric Markov transition functions , 1986 .

[8]  M. Kanai Rough isometries and the parabolicity of riemannian manifolds , 1986 .

[9]  Analytic inequalities, and rough isometries between non-compact Riemannian manifolds , 1986 .

[10]  N. Varopoulos Isoperimetric inequalities and Markov chains , 1985 .

[11]  N. Varopoulos,et al.  Hardy-Littlewood theory for semigroups , 1985 .

[12]  Masahiko Kanai,et al.  Rough isometries, and combinatorial approximations of geometries of non ∙ compact riemannian manifolds , 1985 .

[13]  N. Varopoulos Brownian motion and random walks on manifolds , 1984 .

[14]  R. Brooks The fundamental group and the spectrum of the laplacian , 1981 .

[15]  C. Croke,et al.  Some isoperimetric inequalities and eigenvalue estimates , 1980 .

[16]  Shing-Tung Yau,et al.  Isoperimetric constants and the first eigenvalue of a compact riemannian manifold , 1975 .

[17]  John Milnor,et al.  A note on curvature and fundamental group , 1968 .