Chemical approaches to artificial photosynthesis

The goal of artificial photosynthesis is to use the energy of the sun to make high-energy chemicals for energy production. One approach, described here, is to use light absorption and excited-state electron transfer to create oxidative and reductive equivalents for driving relevant fuel-forming half-reactions such as the oxidation of water to O2 and its reduction to H2. In this “integrated modular assembly” approach, separate components for light absorption, energy transfer, and long-range electron transfer by use of free-energy gradients are integrated with oxidative and reductive catalysts into single molecular assemblies or on separate electrodes in photelectrochemical cells. Derivatized porphyrins and metalloporphyrins and metal polypyridyl complexes have been most commonly used in these assemblies, with the latter the focus of the current account. The underlying physical principleslight absorption, energy transfer, radiative and nonradiative excited-state decay, electron transfer, proton-coupled elec...

[1]  Héctor D. Abruña,et al.  Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes , 1981 .

[2]  J. S. Connolly,et al.  Intramolecular photochemical electron transfer. 2. Fluorescence studies of linked porphyrin-quinone compounds , 1983 .

[3]  T. Meyer,et al.  MOLECULAR AND ELECTRONIC STRUCTURE IN THE METAL‐TO‐LIGAND CHARGE‐TRANSFER EXCITED STATES OF D6 TRANSITION‐METAL COMPLEXES IN SOLUTION , 1984 .

[4]  R. Sassoon,et al.  A study of the effects of polyelectrolytes on the photochemical system containing a Ru(bpy)32+ derivative, methylviologen, and ferricyanide , 1985 .

[5]  T. Meyer,et al.  Photochemistry of Ru( bpy)32+. Solvent Effects , 1983 .

[6]  J. Ferguson,et al.  The electronic spectrum of tris(2,2'-bipyridine)iron(2+) and tris (2,2'-bipyridine)osmium(2+) , 1980 .

[7]  C. M. Elliott,et al.  Photochemically induced charge separation at the molecular level. A chromophore Quencher complex containing both an electron transfer donor and an acceptor , 1987 .

[8]  R. Murray,et al.  Electrocatalytic reduction of CO2 at a chemically modified electrode , 1985 .

[9]  G. Hensler,et al.  Magnetic field induced absorption of zero-phonon lines in (Ru(bpy)3)(PF6)2 and (Ru(bpy)3)(ClO4)2 single crystals , 1987 .

[10]  D. Whitten,et al.  Electron transfer quenching of the luminescent excited state of tris(2,2'-bipyridine)ruthenium(II). Flash photolysis relaxation technique for measuring the rates of very rapid electron transfer reactions , 1974 .

[11]  G. Navon,et al.  Mechanism of the quenching of the phosphorescence of tris(2,2'-bipyridine)ruthenium(II) by some cobalt(III) and ruthenium(III) complexes , 1974 .

[12]  Thomas J. Meyer,et al.  Photochemistry of tris(2,2'-bipyridine)ruthenium(2+) ion (Ru(bpy)32+). Solvent effects , 1983 .

[13]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[14]  G. Crosby Spectroscopic investigations of excited states of transition-metal complexes , 1975 .

[15]  E. Kober,et al.  Concerning the absorption spectra of the ions M(bpy)32+ (M = Fe, Ru, Os; bpy = 2,2'-bipyridine) , 1982 .

[16]  T. Meyer,et al.  The influence of environmental effects on excited-state lifetimes. The effect of ion pairing on metal-to-ligand charge transfer excited states , 1985 .

[17]  T. Moore,et al.  Photodriven charge separation in a carotenoporphyrin–quinone triad , 1984, Nature.

[18]  T. Meyer,et al.  Synthetic control of excited-state properties. Tris-chelate complexes containing the ligands 2,2'-bipyrazine, 2,2'-bipyridine, and 2,2'-bipyrimidine , 1984 .

[19]  H. Yersin,et al.  On the lowest excited states of [Ru(bpy)3](PF6)2 single crystals , 1984 .

[20]  R. C. Young,et al.  Kinetic relaxation measurement of rapid electron transfer reactions by flash photolysis. Conversion of light energy into chemical energy using the tris(2,2'-bipyridine)ruthenium(3+)-tris(2,2'-bipyridine)ruthenium(2+*) couple , 1975 .

[21]  E. B. Pewitt,et al.  High-quantum-yield long-lived charge separation in a photosynthetic reaction center model , 1985 .

[22]  Kuppuswamy Kalyanasundaram,et al.  Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues , 1982 .

[23]  T. Meyer Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states , 1986 .

[24]  C. Creutz,et al.  Light induced electron transfer reactions of metal complexes , 1980 .

[25]  T. Meyer,et al.  Photochemistry of tris(2,2'-bipyridine)ruthenium(2+) ion , 1982 .

[26]  T. Meyer,et al.  Electron and energy shuttling between redox sites on soluble polymers , 1987 .

[27]  M. Schneider,et al.  Transfer of optical activity in the decomposition of (+)- and (-)- trans-3,5-diphenyl-1-pyrazoline: competing "biradical" and "cycloreversion" pathways , 1980 .

[28]  R. Watts,et al.  Photochemistry of tris(2,2'-bipyridyl)ruthenium(II) in aqueous solutions , 1978 .

[29]  Janos H. Fendler,et al.  Photochemical solar energy conversion. An assessment of scientific accomplishments , 1985 .

[30]  A. Adamson,et al.  Excited state Ru(bipyr)32+ as an electron-transfer reductant , 1972 .

[31]  J. Demas,et al.  Tris (2,2'-bipyridine)ruthenium(II) sensitized reactions of some oxalato complexes , 1973 .

[32]  K. Schanze,et al.  Intramolecular Electron Transfer in the Reductive Chromophore-Quencher Complex (bpy)Re(CO)3(py-PTZ)] , 1987 .

[33]  T. Sakamoto,et al.  Studies on Man-Made Photoreaction Centers and Electron Relay Systems. 1. Enhancement of Charge Separation by the Aid of Aligned Viologen Units in Combination with Ruthenium Complexes - Correction , 1981 .

[34]  T. Meyer,et al.  Redox properties of the water oxidation catalysts diaquatetrakis(2,2'-bipyridine)oxoderuthenium(4+) in thin polymeric films. Electrocatalytic oxidation of chloride to chlorine , 1986 .

[35]  T. Meyer,et al.  Incorporation of redox couples into p-chlorosulfonated polystyrene coated electrodes by chemical binding , 1984 .

[36]  Susan W. Gersten,et al.  Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+ , 1985 .

[37]  Richard S. Lumpkin,et al.  Effect of the glass-to-fluid transition on excited-state decay: application of the energy gap law , 1986 .

[38]  J. Demas,et al.  On the "intersystem crossing" yields in ruthenium(II) and osmium(II) photosensitizers , 1979 .

[39]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[40]  Shin-ichi Kikuchi,et al.  Photosensitized Electrolytic Oxidation on Semiconducting n-Type TiO2 Electrode , 1969 .

[41]  J. K. Hurst,et al.  A molecular water-oxidation catalyst derived from ruthenium diaqua bis(2,2'-bipyridyl-5,5'-dicarboxylic acid) , 1987 .

[42]  W. Gelbart,et al.  Nonradiative electronic relaxation under collision-free conditions , 1977 .

[43]  J. Ferguson,et al.  A model for the interpretation of the electronic spectra of the complex ions M(bpy)32+ (M = Fe, Ru, Os) in D3 and C2 sites , 1983 .

[44]  Mauro Maestri Michael-Grätzel 530 nm-Laser Photolysis Studies of the Photo Reduction of Tris (2,2-bipyridine)-ruthenium(II) by Organic Donors , 1977 .

[45]  N. Kress,et al.  Vibrational spectroscopy of the electronically excited state. 5. Time-resolved resonance Raman study of tris(bipyridine)ruthenium(II) and related complexes. Definitive evidence for the "localized" MLCT state , 1981 .

[46]  R. Schmehl,et al.  Independent control of charge-transfer and metal-centered excited states in mixed-ligand polypyridine ruthenium(II) complexes via specific ligand design , 1986 .

[47]  J. Lehn,et al.  Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine) , 1984 .

[48]  P. Bortolus,et al.  Photochemistry of tris(2,2′-bipyridine)ruthenium(II) in chlorinated solvents , 1978 .

[49]  T. Meyer Optical and thermal electron transfer in metal complexes , 1978 .

[50]  D. Whitten Photoinduced electron transfer reactions of metal complexes in solution , 1980 .

[51]  K. Freed Radiationless transitions in molecules , 1978 .

[52]  M. Maeder,et al.  Electronic spectroscopy of M(bpy)2+3 (M = Fe, Ru, Os), Cr(bpy)3+3 and related compounds , 1985 .

[53]  A. Adamson,et al.  Photosensitized Decomposition of Some Cobalt Ammines , 1968 .

[54]  R. C. Young,et al.  Photochemical Generation of Ru(bpy)3+ and 02 - , 1977 .

[55]  R. Murray,et al.  Multiple-state emission and intramolecular electron-transfer quenching in rhenium(I) bipyridine based chromophore-quencher complexes , 1983 .

[56]  J. Winkler,et al.  Lifetimes and spectra of the excited states of cis-dicyanobis(2,2'-bipyridine)iron(II) and -ruthenium(II) in solution , 1987 .

[57]  L. Hench,et al.  Science of ceramic chemical processing , 1986 .

[58]  K. Schanze,et al.  Excited state electron transfer in ligand-bridged dimeric complexes of osmium , 1986 .

[59]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[60]  B. P. Sullivan,et al.  Application of electron-transfer theory to excited-state redox processes , 1979 .

[61]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[62]  Nigel A. Surridge,et al.  Characterization of Metal-Complex-Containing Organic Polymeric Films by Secondary Ion Mass Spectrometry , 1986 .

[63]  M. Rockley,et al.  Picosecond flash photolysis and spectroscopy: Transition metal coordination compounds , 1976 .

[64]  Edward M. Kober,et al.  Application of the energy gap law to excited-state decay of osmium(II)-polypyridine complexes: calculation of relative nonradiative decay rates from emission spectral profiles , 1986 .

[65]  J. Hupp,et al.  Photocurrents arising from photolysis of synthetically controlled chromophore—quencher structures in polymeric films , 1985 .

[66]  T. Meyer Metal Oxo Complexes and Oxygen Activation , 1988 .

[67]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[68]  T. Meyer,et al.  Directed, intramolecular electron transfer in mixed-valence dimers , 1985 .

[69]  E. Kober,et al.  Application of the energy gap law to the decay of charge transfer excited states, solvent effects , 1982 .

[70]  T. Meyer,et al.  Long-range energy transfer in a soluble polymer by an energy-transfer cascade , 1989 .

[71]  B. P. Sullivan,et al.  Synthetic control of excited states. Nonchromophoric ligand variations in polypyridyl complexes of osmium (II) , 1985 .