Experience with image guided, frameless stereotactic neurosurgery shows that intraoperative brain position shifts can be large enough to be problematic, and can occur in different directions at different directions at different stages of an operation. An understanding of the behavior of shifts will allow the surgeon to make the most appropriate use of the image guidance by first minimizing the shift itself, and then anticipating and compensating for any influence the remaining shift will have on the accuracy of the guidance. Three types of shift are described. Type I shift is a local outward bulging that occurs after the skull and dura are opened but before a mass lesion is resected. Type II shift is a local collapse of the brain tissue into the space previously occupied by the tumor. Type III shift is related to loss of cerebrospinal fluid or brain dehydration and is a generalized, more symmetric loss of brain volume. Strategies to minimize these types of shift include appropriate use of medical measures to reduce brain swelling early in the procedure without producing so much brain dehydration that Type II shift is accentuated later in the procedure. Other strategies include mechanical stabilization of brain position with retractors. Anticipating shift, the neurosurgeon should use the guidance as far as possible to map key boundaries early in the procedure before shift becomes more pronounced. Ultimately, however, the correction for the problem of intraoperative brain shift will require the ability to update the imaging data during the surgery.